Index

Abnormal returns (AR), 283 analysis, 282–283	Anti-Money Laundering Act 2006, 183
calculation approach, 281	Anti-Money Laundering Regulations
Academic skills, 128	of 2012, 177, 183
Actual sustainable consumption	API, 41
(ASC), 114	Articles, 7
Actuation, 79	Artificial intelligence (AI), 3, 6, 16,
Advertising, 10	21, 59, 74, 150, 176, 189,
After-cyber-attack sample, 221	232–234, 279, 296–297
Agility, 168	AI-enabled devices, 311
Agricultural/agriculture	EE and attitude toward, 240
activation by variable-rate	emergence of industry 5. 0 and role
technology, 79	of, 21–22
advanced sensing technologies, 85	marketing, 197
agriculture 5.0, 76	Attitude toward act/behavior (ATB),
impact of agriculture on food	250
security, 71–73	Attitude toward artificial intelligence,
crop, 77	233, 235–236
data, 78–79	Augmented Dickey-Fuller test (ADF
decision-making, 79	test), 224, 226
developments in agriculture	Augmented reality (AR), 23, 197
technology, 75	for marketing, 197
industry, 71	Automated Teller Machines (ATM), 40
platforms supporting detectors,	Automation, 19, 190
77–78	strategies to enhance automations
role of IoT in, 85	in industry 5.0, 20–21
stakeholders, 79	Average variance extracted values
Agroindustrialization, 73	(AVE values), 257
fifth industrial revolution, 75	
fourth industrial revolution, 74–75	Banking and Financial Institutions
second industrial revolution, 74	Act, 183
third industrial revolution, 74	Banking industry, 40, 294
Aircraft systems, 77	at age of industry 5.0, 303–304
Algorithm management, 233	challenge of rising costs, 302
American Management Association,	challenges faced by banks in
73	adoption of AI and
Analytics, 189	blockchain, 301–303
Android Application, 86	current applications of AI and
Anti-herding behavior, 221	blockchain in, 296–301

employment challenges, 301	Challenges of using ICT in Indian
ethical challenges, 302	higher education system,
methodology, 295–296	issues and, 96–100
performance challenges, 301	Chatbots, 296–297, 304
regulatory challenges, 302–303	City as emergency environment,
security, privacy, and trust	60–61
challenges, 302	Cloud computing, 74, 176, 189, 232
Banking services, 41	Cloud technologies, 21
Banks, 280, 294	Co-integration test, 223
technological know-how within,	Co-learning approach, 120
43–45	Cognitive computing, 195
Barclays, 297	Cognitive engagement (CE), 237
Bartlett's test, 109	Collaborative education on digital
of sphericity, 238	platform, 148
Begging methods, 70	Collaborative robots (CoBots),
Big data, 59, 74, 189, 232	310–311
Big Data Analysis, 74	Collecting methods, 70
Bio economy, 6	Collectivism, 48
Bio-based products, 6	Commercial data management
Bioenergy, 6	systems, 79
Bitcoin, 303	Commercial livestock production, 87
	Communication, 40
Blockchain, 21, 83, 176, 181, 232, 295, 297–301	Competitive advantage
	-
blockchain-based cryptocurrencies,	innovation and, 32
300	learning and, 32–33
on food security, impact of, 82–84	Composite reliability (CR), 257
integrations for FSC, 84–85	Computational logic, 300
Blockchain-based IoT-based food	Computer fraud, 181
traceability system	Computer Misuse and Cybercrimes
(BIFTS), 83	Act 2018, 181
Blogs, 7	Computer-mediated communication,
Books, 7	147
BRUSCHETTA (blockchain based	Computer-supported collaborative
certification application), 82	learning (CSCL), 147
Business domains, 40	Computers, 99
Business implications, 113	Conscious consumerism of
Business model, 207–208	sustainable products
innovation, 156, 160	academic implications, 113–114
Buy moments, 275	awareness and purchase of
	sustainable/green products
Capital asset pricing model (CAPM),	109
282–283	business implications, 113
Causality test, 226–227	demographic information, 109
CBSL, 45	exploratory factor analysis and
Centre of Excellence for ICT in East	scale reliability analysis,
Africa (CENIT@EA), 182	111

information on sampling design,	Credit Reference Burial Regulations, 183
106	Cronbach's alpha, 238
KMO and Bartlett's Test, 111	Crop, 77
likely to buy sustainable products	scouting, 78
in next five years, 110	Cross-sectional absolute deviation
measure of CSC, 107	model (CSAD model), 220
measurements, 108	Crypto, 21
methodology, 106–107	Customer data collection,
objectives of study, 107–108	management, and analysis,
opinion on likelihood to use	176
products meant for reused,	Customer experience, 11, 193–194,
repaired, recycled, and	205–206
upcycled, 110	Customer involvement, 168
opinion on sending disposal for	Customers, digital literacy of, 46
landfill, 110	Cyber attacks, 220
results, 108	Cyber espionage, 181
statistical method, 108	Cyber-physical systems (CPS), 20, 22
Conscious consumption, 113	Cybercrimes, 179, 220
of sustainable products, 104, 107	data and methods, 221–223
Conscious sustainable consumption	findings, 223–228
(CSC), 108	Cybercrimes Act, 183
Constructivist teaching methods, 95	Cybersecurity, 19–20
Consumer buying behavior, 268	Cybersquatting, 181
Consumer education, 105	
Consumer interaction and	Data analysis procedure, 161–164
satisfaction, 276	Data privacy, 182
Consumer-generated content (CGC),	Data Protecting Act of 2019, 182
196	Data science, 232
Contagion effect, 220	Data-driven marketing, 195
Content writer, 142	Decision-making, 79
Continuous optimization, 212	Deep learning, 79
Converging technologies, 74	Deposit insurance, 281
Copywriter, 142	Developing economies, 156–157
Core values, 8–9	Digital banking (DB), 41–42
Corona virus (COVID-19), 57, 60, 204	causes influencing DB adoption,
first case of, 59	47–48
outbreak, 61	ecosystem, 41
pandemic, 64	ecosystem in SL, 42
Corporate and personal mindset,	Digital capabilities, 205, 208
169–170	Digital disruption, 156
Corporate culture, 169	findings, 164–171
Corporate governance, 170–171	recommendations, and future
Corporate values, 159	research directions,
Cradle-to-Cradle approach (C2C	171–172
approach), 113	research methods, 160-164
Creative content, 196	theoretical background, 157-160

Digital DNA culture, 210	innovation and competitive
Digital financial and legal	advantage, 32
transformation for Industry	learning and competitive
5.0, 178–179	advantage, 32–33
Digital financial transformations	learning and innovation, 31–32
in East Africa, 180–181	literature review, 30
legal environment for, 181–183	methodology, 33
Digital infrastructure, 42–43	open strategy, 30–31
Digital innovations, 16–18	placement, 147
antecedents to sustainable business	process, 3, 44
model, 18	results, 34
best practices of sustainable	Digital twin, 16
businesses with digital	Digital Uganda Vision, 182
innovations in Industry 5.0,	Digitalization, 6, 40, 207
18–20	Digitally aligned strategy, 208–209
emergence of Industry 5.0 and role	Digitally connected customer-centric
of AI, 21–22	approach, 210
industry 5.0 and human-centric	Digitally mapped operational services
innovation, 22–23	209–210
methodology, 17	Digitizations, 16, 18, 40
policy implications, 24	Digitized data, 40–41
strategies to enhance automations	Disparity in AI and CoBots, 314
in Industry 5.0, 20–21	Disruptive innovation, 157
sustainable business model, 17	Disruptive technologies, 160
Digital investments well aligned to	Dissemination of knowledge, 143
strategy, 209	Distance education, 92
Digital leadership, 211–212	Distributed cognition theory, 148
Digital literacy of customers, 46	Distributed database, 300
Digital marketing, 11–12	Distribution channels, 41
Digital platform for research, 194	Do moments, 274–275
Digital revolution, 74, 204	Domino's DXP, 16
Digital technologies, 8	
and tools, 168	E-banking, 41–42
Digital transformation, 19, 29, 188,	E-commerce, 83
179, 204, 295	E-learning, 100
building blocks, 205–208	East Africa, 177
challenges faced in digital	design, methodology, and
transformative process,	approach, 180
212–215	findings, 180–181
enablers of digital transformation,	legal environment for digital
208–210	financial transformations,
factors, number of questions,	181–183
reliability, and validity	literature review, 178–180
scales, 33	practical implications and
framework, 210–212	recommendations, 183
hypothesis test results, 35	Economic dimension (ECOD), 108

Editorials, 10	mediating effect of OTE in
Education, 40, 118	relationship between
literature review, 146–148	dimensions of EO and EI,
outcome, 119	254–255
system in Indonesia, 145	and OTE, 252–254
Education 5.0, 145	Entrepreneurs, 248
key findings, 150	Entrepreneurship, 247–248, 252–253
methodology, 149	Environmental advertising, 10
online learning and 5. 0, 143–144	Environmental dimension (ED), 108
research gaps, 149	Environmental sustainability, 80
result, 150	Epidemic diseases
specifically includes in, 145	alerting and mitigation, 62–64
theoretical foundation, 148	city as emergency environment,
Educational institutions, 143	60–61
Educational technology, 95	methodology, 59
Efficiency score, 282	monitoring and detecting
Electronic and Postal	outbreaks, 61–62
Communications	Ethereum, 303
Regulations 2020, 183	European Commission, 6
Electronic banking, 41	European Credit Transfer and
Embedded banking, 45	Accumulation System, 146
Employee engagement (EE), 234–235	European Union (EU), 71, 177
and attitude toward AI, 240	Exchange-traded funds (ETFs), 297
Employee motivation, 170	Expert systems, 79
Employees attitude, 233	Exploratory factor analysis, 109
Enablers of digital transformation,	External influences, 171
208	Extra virgin vegetable oil (EVOO), 82
digital DNA culture, 210	
digital investments well aligned to	Facebook, 296
strategy, 209	Factory 5.0 model, 16
digitally aligned strategy, 208–209	Farm management computer code
digitally connected customer-	solutions, 78
centric approach, 210	Farm management information
digitally mapped operational	system (FMIS), 78, 84
services, 209–210	Federal Trade Commission's Act
Entrepreneurial intention (EI),	(FTCA), 177
248–249	Feed conversion ratio (FDR), 87
dimensions, 251–252	Field-level Geographic Information
mediating effect of OTE in	System (FIS), 78
relationship between	Fifth Industrial Revolution, 75
dimensions of EO and EI,	Filtration effects, 276
254–255	Financial businesses, 220
OTE and, 254	Financial innovation, 281
Entrepreneurial orientation (EO),	Financial services, 233
248–249	conceptual model and hypothesis,
dimensions, 251–252	235–238

data analysis and findings, 239-240	technology's role in sustaining
EE and attitude toward AI, 240	water resources and, 86–87
literature review, 233–235	Food supply chain (FSC), 73
managerial implications, 242	benefits of using IoT Platform in, 82
methodology, 238–241	IoT and blockchain integrations
moderating impact of	for, 84–85
demographic factors,	IoT Technology, 81
240–241	role in relation to food security, 80
suggestions for future studies, 242	Foodstuffs, 81
FinTech, 279, 294–295	Fourth Industrial Revolution, 73–75
data and methodology, 282–284	Framework of digital transformation,
efficiency and profitability analysis,	210
283–284	continuous optimization, 212
findings, 284–290	development of strategy, 211
firms, 220	digital leadership, 211–212
literature review, 281–282	initial assessment, 210–211
recommendations and practical	roadmap and implementation in
implications, 290–291	agile way, 211
Firms, 204	strategic analysis, 211
business model, 160	Fraudulent use of electronic data, 181
Focus group discussion technique	Fuzzy logic, 79
(FGD technique), 149	Tuzzy Togic, 79
Food, 6, 70	Gadgets, 8
impact of food production on food	Genetic algorithms, 79
security, 71–73	Geographic Information System
industry, 71, 73	(GIS), 78
property system, 82	Globalization, 59, 176
trade, 86	
*	Go moments, 274–275
Food security, 70–71, 80	Google Classroom, 150
impact of agriculture and food	Government initiatives for ICT in
production on, 71–73	Indian Higher Education
agroindustrialization, 73–75	System, 96
benefits of using IoT Platform in	Green consumption, 104
FSC, 82	Green marketing methods, 11
impact of blockchains on, 82–84	Green products, 105
developed FSC IoT Technology, 81	Ground robots, 78
developments in agriculture	Ground station server (GSS), 81
technology, 75–79	TT 1:1 40
influence of IoT on, 81	Health, 40
IoT and Blockchain Integrations	professionals, 310
for FSC, 84–85	Healthcare, 268, 310
IoT's role in livestock production,	current applications of AI and
87	CoBots in, 312–313
precision farming using IoT, 85–86	disparity in AI and CoBots, 314
role of FSC in relation to, 80	methodology and findings,
role of IoT in Agriculture, 85	315–322

practitioner–patient relationships,	Industrial Internet of Things (IIoT),
313–314	189
professional training on adoption	Industrial Revolution, 6, 73
of AI and CoBots, 314–315	Industrial revolution 3. 0, 74
Herding behavior, 220	Industrialization, 203
estimation, 221–222	Industry 2.0, 40
Herding result of test on pre-and	Industry 3.0 era, 40
post-cyber attack sample,	Industry 4.0, 6, 142, 294
223–224	challenges with, 188–189
Herding tendency (see Psychological	Industry 5.0, 7–8, 16, 142, 189–190,
bias)	220, 310
Higher education, 118	banking at age of, 303–304
Human capital, 234	behavioral change, 9–10
Human machine interfaces, 74	best practices of sustainable
Human-centric innovation, Industry	businesses with digital
5. 0 and, 22–23	innovations in, 18–20
Human-centric technique, 8	co-creation, 7
Human-technology synergy, 8	core values, 8–9
Hypothesis testing, 258	and digital marketing, 11–12
	emergence of industry 5. 0 and role
ICAR, 92	of AI, 21–22
In-depth interview as research	evolving customer needs, 9
method, 315–316	and human-centric innovation, 22–23
Inclusivity, 18	literature review, 191–192
India, 92–96	major findings, 12
Indian higher education system	marketing and mass
government initiatives for ICT in	communication, 10
Indian Higher Education	methodology, 191
System, 96	new marketing ecosystem in,
issues and challenges of using ICT	193–197
in Indian higher education	objectives of study, 190-191
system, 96–100	product development, 10-11
list of initiatives and programs of	product excellence and customer
government of India,	experience, 11
97–98	research implications and
objectives of study, 94	recommendations, 13
paradigm shift in Indian higher	research methodology, 7
education system, 94	strategies to enhance automations
research framework, 94	in, 20–21
role of ICT in Indian higher	technology, 199
education system, 94–95	Information and communication
Individual entrepreneurial orientation	technologies (ICTs), 84, 92,
(IEO), 248	176
Indonesia, education system in,	government initiatives for ICT in
145–148	Indian higher education
Indonesian Government, 145	system, 96

issues and challenges of using ICT	Kenya Information and
in Indian higher education	Communication
system, 96–100	Regulation, 182
role in Indian higher education	Know moments, 272
system, 94–95	Knowledge transfer process, 144
Information Communication and	
Dissemination Systems	"LankaQR" program, 45
(ICDS), 85	Leadership style, 170–171
Information technology (IT), 73, 96,	Learning, 31–32, 142, 148
211	and competitive advantage, 32–33
Innovation, 31–32, 87	learning-effect hypothesis, 221
and competitive advantage, 32	models, 151
Innovativeness, 251–253	outcomes, 119
Instagram, 296	skills, 118–119
Intelligent automation, 23	systems, 150
Intelligent objects, 81	Legal environment for digital
Intelligent Precision Agriculture	financial transformations,
(IPA), 81	181–183
Inter-subjectivity theory, 148	Levene's test, 130
Interaction process, 142	Livestock production, IoT's role in, 87
Interception of electronic message or	London sewer system, 57
money, 181	Long-run causality, 226–227
International Telecommunication	Long-run equilibrium, 226
Union (ITU), 179	Long-term volatility analysis
Internet, 147	of post-cyber attack sample,
Internet of everything, 74–75	226–227
Internet of Everything, 74–75 Internet of Things (IoT), 16, 21, 59, 74,	of pre-cyber attack sample,
178, 181–182, 189, 232, 294	224–226
on food security, influence of, 81	Low-tech firms, 156–157, 164
integrations for FSC, 84–85	Low-tech mechanization, 76
mobile phones, 81	Low-teen meenamization, 70
platform in FSC, benefits of using,	Machine learning, 176, 189, 195
82	MANCOVA, 130–133
precision farming using, 85–86	Levene's test of equality of error
role in agriculture, 85	variances, 130
role in livestock production, 87	multivariate tests, 132–133
tools, 59	test, 129
	tests of between-subjects effects,
Job-demand-resource model (JD-R	131
model), 235	Map format, 78
Johansen co-integration examination,	Market vendors/merchants
224, 226	expansion of E-banking service
Journals, 7	providers in market, 45
	technology adoption in, 45-46
Kaiser-Meyer-Olkin (KMO), 109, 238	Marketing, 6, 10, 188
KBW index returns, 221	automation, 196-197

Mass communication, 10	Online collaborative learning (OCL),
Massive open online courses	143
(MOOC), 118, 145, 150	Online communication, 128
conceptual framework, 118	Online learning and 5.0, 143–144
customers, 124	Open data, 30
education outcome, 119	Open government, 30
elements, 123	Open innovation, 30
learning skills, 118–119	Open learning process, 35
literature review, 119–129	Open science, 30
MANCOVA, 130–133	Open strategy, 30–31
objectives of study, 129	paradigm, 31
reliability test, 129–130	Open-source software, 30
research methodology, 129	Openness, 30, 250
results, 129	conceptual framework, 250
suggestions and implications, 134	data analysis, 258–259
Mechanical knitting machines, 73	hypothesis development, 251–255
Mediation analysis, 258–259	limitations and future scope of
Micro-moments, 269	work, 261–262
data analysis, 272–275	practical implication, 261
findings, 275	research method, 255–258
limitations, 276–277	theoretical implication, 260-261
managerial implications, 276	Openness to experience (OTE), 237,
studies, 268	248, 250
suggestions, 275–276	dimensions of EO and, 252-254
Milk, 81	and EI, 254
Minimally invasive surgery (MIS), 310	mediating effect of OTE in
Mitigation, 62–64	relationship between
MITWPU University, 106	dimensions of EO and EI,
Mobiles, 41, 270	254–255
money, 178, 180	Operational process, 206–207
Modern agriculture, 78	Optimal lag, 224
Modern education system, 117	length, 226
Money laundering (ML), 177	Organizational culture, 169–170
Moodle, 150	Organizational structure, 168–169
Multiculturalism, 59	Organizational values, 159
Multiple regression analysis, 240	OTE, conscientiousness, extroversion,
	agreeableness, and
Network-based MOOC, 128	neuroticism (OCEAN), 250
Networked learning, 147	Outcome-as-a-service, 11
Neural networks, 21, 79	
New marketing ecosystem in industry	Pay&Go, 46
5.0, 193–197	Payment platforms, 41
Nutritional security, 80	Pedagogy, 148
	Peer-to-peer transmission (P2P), 300
Obsolescence, 156	Perceived behavioral control (PBC),
One Note, 150	105, 250

Perceived enjoyment, 300-301	Remote sensing platforms, 77
Perception of conscious consumption	Repair, reuse, and recycle (three R),
of sustainable products, 104	104
Perishable FSC (PFSC), 82	Resilience, 9
Personal Financial Information (PFI),	Resources, processes, values
177	framework (RPV
Personal identification numbers	framework), 158–160
(PIN), 40	Retail, 269
Personality trait, 248, 250	Risk-taking ability, 251
Personalization, 194–195	Risk-taking proclivity, 251
Philip—Perron test (PP test), 224, 226	Robo-advising, 295
Physical cyber systems, 74	Robo-advisors, 297
Pop-up advertisements, 273	Robotic Process Automation (RPA), 297
Power distance (PD), 48	
Practitioner–patient relationships,	Robotics, 74, 189
313–314	and sensor technology, 74
Precision agriculture (PA), 76	Robots, 8
Precision Farming Using IoT, 85–86	
Predictive analytics, 195	Sampath Bank, 44
Proactiveness, 252–253	SARS, 57
Product development, 10–11	Satellites, 77
Product excellence, 11	Saving advertising costs, 276
Professional training on adoption of	Schools, 92
AI and CoBots, 314–315	Second Industrial revolution, 74
Profitability, 280 (see also Reliability)	Secondary resources, 7
analysis, 283–284	Self-regulated learning, 119
Programmable logic controllers	Sensing subsystem, 85
(PLCs), 73	Sensors, 77
Project-based learning, 151	Short-run causality, 227
Proximal detection, 77	Simple regression analysis, 240
Proximal sensing, 77	Smart city, 56, 61
Psychological bias, 220	effects of, 59
Psychological empowerment, 236	Smart devices, 81
Psychological state engagement, 236	for shopping activities, 193
	Smart Farming, 78
Qualitative method, 315	Smart technologies, 16, 190
Quantum computing, 20	Smart transformation (see also Digital
Questionnaire, 238	transformation)
Quick response payment (QR	alerting and mitigation,
payment), 42	62–64
payment), 12	city as emergency environment,
Real-time precision agricultural	60–61
mechanism, 85	methodology, 59
Reliability, 129	monitoring and detecting
statistics, 130	outbreaks, 61–62
	necessary in cities, 59
test, 129–130	necessary in cities, 39

Smartphones, 86 Sustainable livestock production Social dimension (SD), 108 methods, 87 Social media, 10, 196 Sustainable products, 104, 108, 113 Socially acceptable methods, 70 sustainable consumption for, 104 Society 5.0, 22, 142 Sustainable tourism, 178 Socio-cognitive conflict theory, 148 Sustaining innovation, 157 Synthetic theory of law and Socio-technical systems theory, 179 Software Services Agreement (SSA), 79 technology, 179-180 Soil moisture data, 86 **SOLO**, 46 Task-based MOOC, 128 Sri Lanka (SL), 46 Teaching process, 148 Technological revolution, 74 acceptance of DB among customers in, 46-47 Technological Society 4.0, 142 acceptance of DB among Technology, 6, 9-10, 81, 144, 204, 207 customers in SL, 46-47 adoption in market vendors/ causes that influencing DB merchants, 45-46 adoption, 47-48 management strategy, 168 DB ecosystem in, 42 role in sustaining water resources and food security, 86-87 digital infrastructure, 42–43 digital literacy of customers, 46 technology-based online education, technological know-how within banks, 43-45 technology-driven progress, 8 technology adoption in market Telegram, 296 vendors/merchants, 45-46 Theory of disruptive innovation, 157 Theory of planned behavior (TPB), transactions as percentage, 47 248, 250 Stakeholders, 72 Third Industrial Revolution, 73-74 Statistical Package for Social Science (SPSS version 21), 33 3D-printing technology, 23, 74 Stealing methods, 70 Top-level management, 170 Steam engines, 74 Traditional agriculture, 78 Strategic asset allocation (SAA), 297 Trait engagement, 236-237 Student-centered learning approach, Transformational solutions, 295 151 Transparency with pseudonymity, 300 Travel and tourism, 268-269 Subjective criteria, 105 Subjective norms (SNs), 250 Triple bottom Line (TBL), 108 Sustainable agriculture, 70 Sustainable business model, 16–17 Uncertainty avoidance (UA), 48 United Nations Educational. antecedents to, 18 Sustainable businesses with digital Scientific, and Cultural Organization (UNESCO), innovations in Industry 5.0, best practices of, 18-20 Sustainable competitive advantage, 32 Sustainable consumption, 105 Variable-rate technology, activation Sustainable development, 104–105 by, 79 Variance decomposition test, result Sustainable Development Goals

of, 228

(SDGs), 112, 176

338 Index

Vector auto-regression model Walmart, 17 (VAR model), 220, Water resources and food security, 223-226 technology's role in sustaining, 86–87 Vector error correction model (VECM), 223, 226 WhatsApp, 296 Videoconferencing, 92 World Bank, 71 Virtual learning environment, 144 World Bank study, 50 Virtual reality (VR), 199 World Food Organization (WHO), 70 Vlogger, 142 Volatility You tuber, 142 estimation, 222 spillover, 220 Zero moment of truth (ZMOT), 270