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Abstract

Purpose – The main motivation of this paper is to present the Yosida approximation of a semi-linear
backward stochastic differential equation in infinite dimension. Under suitable assumption and condition, an
L2-convergence rate is established.
Design/methodology/approach – The authors establish a result concerning the L2-convergence rate of the
solution of backward stochastic differential equation with jumps with respect to the Yosida approximation.
Findings – The authors carry out a convergence rate of Yosida approximation to the semi-linear backward
stochastic differential equation in infinite dimension.
Originality/value – In this paper, the authors present the Yosida approximation of a semi-linear backward
stochastic differential equation in infinite dimension. Under suitable assumption and condition, an
L2-convergence rate is established.
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1. Introduction
Backward stochastic differential equation (BSDE) was performed first by Pardoux and Peng
[1] who proved the existence and uniqueness of adapted solutions, under suitable square-
integrability assumptions, on the coefficients and on the terminal condition. Later, several
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authors have been attracted to this area and have provided many applications such as in
stochastic games and optimal control [2–4], partial differential equations [5] and numerical
approximation [6].

The main motivation of this paper is to carry out a convergence rate of the Yosida
approximation to the semi-linear backward stochastic differential equation with jumps in
infinite dimension. More precisely, let H be a separable Hilbert space with inner product C,DH
and H* its dual space. Let V be a uniformly convex Banach space, such that V ⊂ H
continuously and densely. For its dual space V*, it follows that H* ⊂ V* continuously and
densely. Then by the identification of H and H* via the Riesz isomorphism, we get

V ⊂H ⊂V *: (1)

(V, H, V*) is called a Gelfand triple.

Following [7], we introduceAwhich is a linear bounded operator such thatA:D(A)5V→

V*, where D(A) 5 {v ∈ V, Av ∈ H}. Using [8], we introduce the Yosida approximation Aλ,
λ > 0 of A defined as

Aλxd
1

λ
Jðx� J λxÞ; (2)

where J: V → V* is the duality mapping defined by Definition 2.1, and Jλ: V → V is the
resolvent of the operator A is defined by

J λxdðJ þ λAÞ−1Jx: (3)

This Yosida approximation is used to approximate the following semi-linear backward
stochastic differential equation in infinite dimension:

dY t ¼ AYtdt þ f ðt;Yt; Z t;QtÞdt þ Z tdWt þ
Z

E

QtðxÞ ~Nðdt; dxÞ
YT ¼ X ∈H :

8<
: (4)

whereW is a cylindricalWiener process, and ~N is the compensated Poisson randommeasure.
Using the following family of approximating equations:

dY λ
t ¼ AλY

λ
t dt þ f

�
t;Y λ

t ; Z
λ
t ;Q

λ
t

�
dt þ Z λ

t dWt þ
Z

E

Q
λ
t ðxÞ ~Nðdt; dxÞ

YT ¼ X ∈H ;

8<
:

where λ > 0, and and Aλ is the Yosida approximation, we establish the existence and
uniqueness of the solution of (4).

Many authors have been devoted to the case of BSDE in infinite dimensional spaces such
as [9–11].

Hu and Peng [10] proved the existence and the uniqueness of the solution (Y, Z) of this semi-
linear backward stochastic evolution equations. This kind of equation appears in many topics
as those by Bensoussan [12, 13] and Hu and Peng [14] for the case with no jumps who have
studied the maximum principles for stochastic control systems in infinite dimensional spaces
and the theory of optimal control and controllability for stochastic partial differential equations.

Existence and uniqueness of a strong solution of (4) was obtained in Ref. [7] by considering
a special case of a backward stochastic evolution equation for Hilbert space valued processes.
This, in turn, is studied by taking finite dimensional projections and then taking the limit.
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This is the Galerkin approximation method which has been used by several authors (See,
e.g. Ref. [15]).

Yosida approximations of stochastic differential equations in infinite dimension have
been studied in Refs. [16–20]. The authors consider Yosida approximations of various classes
of stochastic differential equations with Poisson jumps.

The authors in Ref. [21] prove the existence and uniqueness of a solution for a class of
backward stochastic differential equations driven by a geometric Brownian motion with a
sub-differential operator bymeans of theMoreau-Yosida approximationmethod (see Ref. [22]
for this used method). Using approximation tools, the authors provide a probabilistic
interpretation for the viscosity solutions of a kind of non-linear variational inequalities.

In the same area, the authors in Ref. [23] deal with a class of mean-field backward
stochastic differential equations, with sub-differential operator corresponding to a lower
semi-continuous convex function. Using Yosida approximation tools, the authors establish
the existence and uniqueness of the solution. As an application, they give a probability
interpretation for the viscosity solutions of a class of non-local parabolic variational
inequalities.

The authors in Ref. [24] propose and analyze multivalued stochastic differential equations
(MSDEs) with maximal monotonous operators driven by semimartingales with jumps. They
introduce some methods of approximation of solutions of MSDEs based on discretization of
processes and Yosida approximation of the monotonous operator. Their paper studies the
general problem of stability of solutions of MSDEswith respect to the convergence of driving
semimartingales.

Bahlali et al. [25] deal with reflected backward stochastic differential equation (RBSDE)
with both monotone and locally monotone coefficient and squared integrable terminal data.
Existence and uniqueness of the solution are established with a polynomial growth condition
on the coefficient and using Yosida approximation tools. An application to the
homogenization of multivalued partial differential equations is given by the authors.The
aim of our paper differs from the one proposed in Ref. [26], as it concentrates on BSDEs
instead of SDEs. Additionally, it differs from the approach described in Ref. [7] by integrating
the idea of L2-convergence of Yosida approximation. This integration offers a possible
technique for solving multivalued differential equations.

This paper is composed of four sections. Section 2 introduces some notations, the Yosida
approximation approach and preliminaries results. Section 3 establishes a result concerning
the L2-convergence rate of the solution of backward stochastic differential equation with
jumpswith respect to the Yosida approximation. In Section 4, we carry out a convergence rate
of the Yosida approximation to the semi-linear backward stochastic differential equation in
infinite dimension.

2. Preliminaries and notations
Let ðΩ;F ;PÞ be a probability space with filtration ðF tÞt∈½0;T�∈F . Let Ξ, H be two separable

Hilbert spaces, and H* be the dual space of H. Let V be a Banach space dense in H. Let us
assume that V is uniformly convex with uniformly convex dual V*. It follows that H* ⊂ V*
continuously and densely. Then, by the identification of H andH* via the Riesz isomorphism,
we get

V ⊂H ⊂V *:

The Milman-Pettis theorem (see, e.g. Yosida [[27], p. 127]) states that every uniformly convex
Banach space is reflexive. So, V is a reflexive Banach space.
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Following [28], we introduce a cylindrical Wiener process in Ξ as a family (W(t), t ≥ 0), of
linear applications Ξ → L2(Ω) such that:

(1) For every h ∈ Ξ, {W(t)h, t ≥ 0} is a real (continuous) Wiener process,

(2) For every h, k ∈ Ξ and t, s ≥ 0, E(W(t)h, W(t)k) 5 (t ∧ s)(h,k)Ξ.

Let ðE;BðEÞÞ be a measurable space, where E is a topological vector space. Furthermore, let
ξ(t) be a L�evy process onE and be denoted by ν(dx), the L�evymeasure of ξ. Denote byL2(ν) the
L2-space of square integrable H � valued measurable functions associated with ν.

Set p(t)5Δξ(t)5 ξ(t)� ξ(t� ). Then p5 {p(t), t∈Dp} is a stationary Poisson point process
on E with characteristic measure ν. Denote by N(dt, dx) the Poisson counting measure

associated with the L�evy process, Nðt;AÞ ¼ P
s∈Dp s≤tIAðpðsÞÞ. Denote by ~Nðdt; dxÞ ¼

Nðdt; dxÞ− dtνðdxÞ the compensated Poisson random measure. The filtration is defined as
follows

F t ¼ σðWs;Nðs;AÞ; A∈BðEÞ; s≤ tÞ; t ≥ 0ð Þ:
We denote by P the predictable σ � field on Ω3 [0, T]. Introduce now the following spaces:

(1) L2(0, T, H): the set of all F t −progressively measurable processes takes its values in
H, such that

kxk ¼ E

Z T

0

����xðtÞj2dt
� �1

2

< ∞:

(2) L2(Ξ, H): the set of the Hilbert-Schmidt operators from Ξ to H, that is,

L2ðΞ;HÞ ¼ ψ ∈LðΞ;HÞ
�����
X∞
i¼1

�����ψenj2H < ∞

( )

where feng∞n¼1 is an orthonormal basis on Ξ. The set L2(Ξ, H) is a Hilbert space.

(3) L2(ν): L2 � space of square integrable H � valued measurable functions Q: H → H
associated with ν, that is,

jQj2L2ðνÞ ¼
Z t

0

jQsj2HdνðsÞ < ∞:

Moreover, beside the same hypotheses on the cylindrical Wiener process, we have:

(1) A positive number T > 0;

(2) A map f: [0, T] 3Ω 3 V 3 L2(Ξ, H) 3 L2(ν) → H.

(3) A final data X ∈L2ðΩ;FT ;HÞ.
(4) A bounded linear operator A: D(A) 5 V → V*, where D(A) 5 {v ∈ V, Av ∈ H}. We

assume that the operator A is monotone, meaning:

V hv;AviV * ≥ 0; ∀v∈DðAÞ: (5)

Now, we assume the following useful hypothesis denoted by Hyp.1:
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(1) f is measurable from P3BðHÞ3BðL2ðΞ;HÞ3L2ðνÞÞ to BðHÞ and E
R T

0

jf ðs; 0; 0; 0Þj2Hds < þ∞.

(2) There exists a constant C> 0, such that P almost surely for almost every t∈ [0,T], the
following holds for all Y1, Y2

∈ H, Z1, Z2 ∈ L2(Ξ, H) and Q1, Q2
∈ L2(ν):

jf
�
t;Y 1

t ; Z
1
t ;Q

1
t

�
� f

�
t;Y 2

t ; Z
2
t ;Q

2
t

�
jH ≤C

���Y 1
t � Y 2

t jH þ
			Z 1

t � Z 2
t kL2ðΞ;HÞ þ

			Q1
t � Q

2
t kL2ν

� �
:

In most cases, the duality mapping defined here is multivalued.

Definition 2.1. The duality mapping J: V → V* is defined by:

JðxÞ ¼
n
x* ∈V *

���x*ðyÞdhx; yiH
o
; ∀y∈V : (6)

Under hypotheses of V and V*, we get the following result:

Theorem 2.2. [20] Let V be a Banach space. If V* is strictly convex, then the duality mapping
J: V → V* is single-valued.

For the detailed proof, see Theorem 1.2 in Ref. [8].

Definition 2.3. The inverse mapping J�1: V* → V is defined by:

J−1
�
x*
�
¼ 


y∈V such thathz; yiH ¼ hz; xiH
�
; ∀z∈V : (7)

The inverse mapping J�1:V*→V is single-valued. For the proof, see [[29], Proposition 32.22]
and [[20], Proposition 3.13.].

We will now provide an approximation of the operator A, as mentioned in Ref. [8].

Definition 2.4. For every x ∈ V and λ > 0, the Yosida approximation of A is defined by the
operator Aλ: V → V* as

Aλxd
1

λ
Jðx� J λxÞ; (8)

where the resolvent Jλ: V → V of the operator A is defined by Jλx 5 xλ, with xλ as a unique
solution to the equation:

0 ¼ Jðxλ � xÞ þ λAxλ: (9)

The uniqueness of xλ was proved by [20] [Proposition 3.17. p. 36]. According to [8]
[Proposition 1.3], Aλ is single-valued, monotone, bounded on bounded subsets and semi-
continuous from V to V*. The resolvent can be written as

J λxdðJ þ λAÞ−1Jx: (10)

Lemma 2.5. Equation (8) can be reformulated as:

AλðxÞ ¼
�
A

−1 þ λJ−1
�−1

x; x∈V : (11)

Proof. Let x ∈ V and Jλ(x) be the resolvents of the operatorA defined by equation (10). By the
definition of the Yosida approximation and the homogeneity of J�1 (see Ref. [20]), Equation (8)
can be written as
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J λðxÞ ¼ x� λJ−1ðAλðxÞÞ:

Using the fact that Aλ(x) 5 A(Jλ(x)) for all x ∈ V ([[20], Proposition 3.19]) and inserting
this into the resolvent equation (9), we obtain Aλ(x)5 A(x� λJ�1(Aλ(x))) or equivalently, x5
(A�1 þ λJ�1)(Aλ(x)). Since Aλ is single-valued, we conclude (11).

3. Yosida approximation
Let H be a separable Hilbert space and V a Banach space such that the space V ⊂ H is
reflexive and dense inH. We identifyHwith its dual spaceH*, and Vwith its dual space V*.
Then, we get

V ⊂H ⊂V *

We denote by j$jV, j$jV*, j$jH, the norms in V, V* and H, respectively, and by C, D the duality
product between V and V*. We introduce the following application:

A : Ω→L
�
V ;V *

�
;

which verifies the following coercivity condition (L1):

There exist c1 ≥ 0, c2 ∈R such that for all v ∈ V, t ∈ [0, T], we have

ðL1Þ2
V*

hAv; viV þ c1jvj2H ≥ c2jvj2V :

In this section, we are interested in the Yosida approximation of the following semi-linear
backward stochastic differential equation in infinite dimension:

dY t ¼ AYtdt þ f ðt;Yt; Z t;QtÞdt þ Z tdWt þ
Z

E

QtðxÞ~Nðdt; dxÞ
YT ¼ X ∈H :

8<
: (12)

Let us consider the family of approximating equations of (12)

dY λ
t ¼ AλY

λ
t dt þ f

�
t;Y λ

t ; Z
λ
t ;Q

λ
t

�
dt þ Z λ

t dWt þ
Z

E

Q
λ
t ðxÞ~Nðdt; dxÞ; λ > 0

YT ¼ X ∈H :

8<
: (13)

Remark 3.1. Note that, for all λ > 0, the operator Aλ being linear and bounded [[8],
Proposition 2.2], it is checked by the standard Picard�Lindelof iteration methods [7] that the
triplet (Yλ, Zλ, Qλ) is a classical solution of (13), and it verifies for all t ∈ [0, T], that

Y λ
t ¼ X �

Z T

t

AλY
λ
u þ f

�
u;Y λ

u; Z
λ
u;Q

λ
u

�� �
du�

Z T

t

Z λ
udWu �

Z T

t

Z
E

Q
λ
uðxÞ~Nðdu; dxÞ: (14)

The following result establishes the existence and the uniqueness of the solution of (12).

Theorem 3.2. [[7], Theorem 4.1] Assume that X ∈L2ðΩ;FT ;HÞ. Under Hypothesis Hyp.1
and Condition (L1), equation (12) has a unique progressively measurable process solution
(Y, Z, Q) ∈ H 3 L2(Ξ, H) 3 L2(ν) such that:

(1) E½R T

0

���Ytj2Hdt�<∞, E½R T

0

���Z tj2L2ðΞ;HÞdt�<∞, E½R T

0

���Qtj2L2ðνÞdt�<∞.

(2) Yt ¼ X −
R T

t
AYs þ f ðð s;Ys; Z s;QsÞÞds−

R T

t
Z sdWs −

R T

t

R
E
QsðxÞ~Nðds; dxÞ.
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The following results will be used to prove our main result about the L2 convergence rate.

Remark 3.3. The coercivity condition (L1) of the operator A is transferred to its Yosida
approximation Aλ, which follows directly from [[17], Lemma 3.10] and [[17], Proof of
Proposition 5.1]. There exist ~c1 ≥ 0, ~c2 > 0 such that for all v ∈ V, t ∈ [0, T]

2V * hAv; viV þ ~c1jvj2H ≥~c2jvj2V :
Lemma 3.4. Under Conditions (L1), andHyp.1, there exists C > 0, such that for all λ> 0,

we have

supt∈½0;T�E
���Y λ

t j2H
h i

þ
Z T

t

EkZ λ
sk2L2ðΞ;HÞdsþ

Z T

t

E
h���Y λ

t j2V
i
dsþ

Z T

t

EjQλ
s j2L2ðνÞds≤C: (15)

Proof. For fixed λ > 0, we can apply the Itô formula to jY λ
t j2H and we obtain:

E
��Y λ

t

��2
H
þ
Z T

t

E
		Z λ

s

		2

L2ðΞ;HÞdsþ
Z T

t

EjQλ
s j2L2ðνÞds ≤ EYT j2H � 2

Z T

t

EV*

�
AλY

λ
s ;Y

λ
s



V
ds

� 2

Z T

t

E
�
f
�
s;Y λ

s ; Z
λ
s ;Q

λ
s

�
;Y λ

s



H
ds:

Then, by using the coercivity condition (L1) ofAλ and Cauchy-Schwartz inequality for α1 > 0,
we get

EjY λ
t j2H þ E

Z T

t

kZ λ
sk2L2ðΞ;HÞdsþ

Z T

t

EjQλ
s j2L2ðνÞds≤ EjY 2

T jH þ 1

α1

Z T

t

Ejf �s;Y λ
s ; Z

λ
s ;Q

λ
s

�j2Hds
þ α1

Z T

t

E
����Y λ

s j2H
�
ds

þ
Z T

t

h
−~c2E

���Y λ
s j2V þ ~c1E

���Y λ
s j2H

i
ds:

Then, by using Hyp.1, we obtain:

EjY λ
t j2H þ

Z T

t

EkZ λ
sk2L2ðΞ;HÞdsþ

Z T

t

EjQλ
s j2L2ðνÞds

≤ EjYT j2H þ C

α1

Z T

t

E
����Y λ

s j2H þ
���Z λ

s j2L2ðΞ;HÞ þ
���Qλ

s j2L2ðνÞ
�
ds

þ
Z T

t

E
h
−~c2

			Y λ
sk2V þ ~c1

���Y λ
s j2H

i
ds

þ C

α1

Z T

t

Ejf ðs; 0; 0; 0Þj2Hdsþ α1

Z T

t

EjY λ
s j2Hds:

Therefore, for α1 large enough, we obtain:

EjY λ
t j2H þ 1� C

α1

� �Z T

t

EkZ λ
sk2L2ðΞ;HÞdsþ ~c2

Z T

t

EjY λ
s j2Vdsþ

Z T

t

EjQλ
s j2L2ðνÞds≤ EjYT j2H

þ C3

Z T

t

EjY λ
s j2Hdsþ C3

Z T

t

h
f ðs; 0; 0; 0Þ2

i
ds
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where C3 ¼ α1 þ C
α1

is independent of λ. By the Gronwall lemma, we finally obtain the
expression (15).

The following remark plays a fundamental role in the convergence rate of Yosida approximation.

Remark 3.5. According to [[8], proposition 2.2], Aλ verifies the boundedness condition

kAλxkV * ≤ kAxkV * ;

for all x ∈ D(A) on [0, T] and by using the fact that D(A) 5 V and we get

kAλY
λ
sk2V * ≤CkY λ

sk2:
under Condition (L1) and Hyp.1, we then obtain by applying lemma 3.4:

lim supλ→0

Z T

t

E
h���AλY

λ
s j2V *

i
ds < ∞: (16)

4. Convergence of Yosida approximation
In this section, we prove a convergence rate of Yosida approximation to the following semi-
linear backward stochastic differential equation in infinite dimension:

dY t ¼ AYtdt þ f ðt;Yt; Z t;QtÞdt þ Z tdWt þ
Z

E

QtðxÞ ~Nðdt; dxÞ
YT ¼ X ∈H :

8<
: (17)

Proposition 4.1. Let Yλ be the solution to the backward stochastic differential equation (12),
and assume that Hyp.1 holds. Let λ, μ > 0, then there exists D > 0, such that:

supt∈½0;T�EjY λ � Y μj2H þ
Z T

t

EkZ λ
s � Z μ

sk2L2ðΞ;HÞdsþ
Z T

t

EjQλ
s � Q

μ
s j2L2ðνÞds≤Dðλþ μÞ:

Proof. Let us denote by Y λ
t and Y μ

t two Yosida approximation to

dY t ¼ AYtdt þ f ðt;Yt; Z t;QtÞdt þ Z tdWt þ
Z

E

QtðxÞ ~Nðdt; dxÞ
YT ¼ X ∈H :

8<
: (18)

by Itô formula, then the expectation, we get

EjY λ
t � Y μ

t j2H þ
Z T

t

EkZ λ
s � Z μ

s k2L2ðΞ;HÞdsþ
Z T

t

EjQλ
s � Q

μ
s j2L2ðνÞds ¼ −2

Z T

t

EV

�
Y λ

s � Y μ
s ;
�
AλY

λ
s � AμY

μ
s

�

V
* ds

� 2

Z T

t

E
�
Y λ

s � Y μ
s ; f

�
t;Y λ

s ; Z
λ
s ;Q

λ
s

�� f
�
t;Y μ

s ; Z
μ
s ;Q

μ
s

�

H
ds:

By definition of Aλ and the bijectivity of Jλ, we have I 5 Jλ þ J�1(λAλ). Hence:

V

�
Y λ

s�Y μ
s ;AλY

λ
s�AμY

μ
s



V*
¼V

��
J λY

λ
sþλJ−1AλY

λ
s

���
J μY

μ
s þμJ−1AμY

μ
s

�
;
�
AλY

λ
s�AμY

μ
s

�

V*

¼
V

�
J λY

λ
s

� �JμY
μ
s ;
�
AλY

λ
s�AμY

μ
s

�

V * þ

V

�
J−1

�
λAλY

λ
s

��J−1
�
μAμY

μ
s

�
;
�
AλY

λ
s�AμY

μ
s

�

V * :

So by using Lemma 2.5, we obtainAλ5AJλ andAμ5AJμ. Then themonotonicity ofA (5) and
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the fact that J�1 is the duality map from V* to V** 5 V, the first aforementioned term is
positive, so we get

−V

�
Y λ

s � Y μ
s ;AλY

λ
s � AμY

μ
s



V * ≤ �

V

�
J−1

�
λAλY

λ
s

�� J−1
�
μAμY

μ
s

�
;
�
AλY

λ
s � AμY

μ
s

�

V*

¼ −
1

λ V

�
J−1

�
λAλY

λ
s

�
; λAλY

λ
s



V * � 1

μ V

�
J−1

�
μAμY

μ
s

�
; μAμY

μ
s



V *

þ
V

�
J−1

�
λAλY

λ
s

�
;AμY

μ
s



V * þ

V

�
J−1

�
μAμY

μ
s

�
;AλY

λ
s



V *

≤� λ
��AλY

λ
s

��2
V *

� μ
��AμY

μ
s

��2
V *

þ μ
��AμY

μ
s

��
V*

���AλY
λ
s j
V*

þ λ
��AμY

μ
s

��
V*

��AλY
λ
s

��
V*

≤
λþ μ
2

���AλY
λ
s j2V * þ

���AμY
μ
s j2V *

� �
;

where we have used the elementary inequality 2ab ≤ a2 þ b2. Here, by applying the
expectation and Lipschitz condition Hyp.1 of f, we get

EjY λ
t � Y μ

t j2H þ
Z T

t

kZ λ
s � Z μ

sk2L2ðΞ;HÞdsþ
Z T

t

EjQλ
s � Q

μ
s j2L2ðνÞds≤

λþ μ
2

Z T

t

E

����AλY
λ
s j2V *dsþ

Z T

t

E

����AμY
μ
s j2V *ds

� �

� 2

Z T

t

�
Y λ

s � Y μ
s ; f

�
t;Y λ

s ; Z
λ
s ;Q

λ
s

�� f
�
t;Y μ

s ; Z
μ
s ;Q

μ
s

�

H
ds

≤ α
Z T

t

EjY λ
s � Y μ

s j2Hdsþ
1

α

Z T

t

E
�
f
�
t;Y λ

s ; Z
λ
s ;Q

μ
s

�
−f

�
t;Y μ

s ; Z
μ
s ;Q

μ
s

��2
H
ds

þ λþ μ
2

Z T

t

E

����AλY
λ
s j2V*dsþ

Z T

t

E

����AμY
μ
s j2V*ds

� �
≤α

Z T

t

EjY λ
s � Y μ

s j2Hds

þ C

α

Z T

t

E
h���Y λ

s � Y μ
s j2H þ

���Z λ
s � Z μ

s j2L2ðΞ;HÞ þ
���Qλ

s � Q
μ
s j2L2ðνÞ

i
ds

þ λþ μ
2

Z T

t

E

����AλY
λ
s j2V*dsþ

Z T

t

E

����AμY
μ
s j2V*ds

� �
≤ αþ C

α

� �Z T

t

EjY λ
s � Y μ

s j2Hds

þ C

α

Z T

t

E
h���Z λ

s � Z μ
s j2L2ðΞ;HÞ þ

���Qλ
s � Q

μ
s j2L2ðνÞ

i
ds

þ λþ μ
2

Z T

t

E

����AλY
λ
s j2V*dsþ

Z T

t

E

����AμY
μ
s j2V*ds

� �
:

Then, we obtain

EjY λ
t � Y μ

t j2H ≤ EjY λ
t � Y μ

t j2H þ
Z T

t

EkZ λ
s � Z μ

sk2L2ðΞ;HÞds

þ
Z T

t

E
��Qλ

s−Q
μ
s

��2
L2ðνÞds≤ αþ C

α

� �Z T

t

EjY λ
s � Y μ

s j2Hdsþ Bλ;μ; (19)

where
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Bλ;μ ¼ C

α

Z T

t

E
h���Z λ

s � Z μ
s j2L2ðΞ;HÞ þ

���Qλ
s � Q

μ
s j2L2ðνÞ

i
ds

þ λþ μ
2

Z T

t

E

����AλY
λ
s j2V *dsþ

Z T

t

E

����AμY
μ
s j2V *ds

� �
:

Using Gronwall lemma, this shows that EjY λ
t −Y μ

t j2H ≤Bλ;μe
C
α ðT−tÞ, which plugged in the

inequality (19) provides

EjY λ
t � Y μ

t j2H þ
Z T

t

EkZ λ
s � Z μ

s k2L2ðΞ;HÞdsþ
Z T

t

EjQλ
s � Q

μ
s j2L2ðνÞds ≤ Bλ;μ

�
1þ C1ðT � tÞeðC1ðT−tÞÞ�

≤ Bλ;μð1þ C2ðT � tÞÞ;

where C1 ¼
�
αþ C

α

�
and C2 ¼ C1e

ðC1ðT−tÞÞ. Then, we have

Z T

t

EkZ λ
s � Z μ

sk2L2ðΞ;HÞdsþ
Z T

t

EjQλ
s � Q

μ
s j2L2ðνÞds≤EjY λ

t � Y μ
t j2H þ

Z T

t

EkZ λ
s

� Z μ
s k2L2ðΞ;HÞdsþ

Z T

t

EjQλ
s � Q

μ
s j2L2ðνÞds≤ ð1þ C2ðT � tÞÞ

3
C

α

Z T

t

E
h			Z λ

s � Z μ
sk2L2ðΞ;HÞ þ

���Qλ
s � Q

μ
s j2L2ðνÞ

i
ds

�

þ λþ μ
2

Z T

t

E

����AλY
λ
s j2V *dsþ

Z T

t

E

����AμY
μ
s j2V *ds

� �
:

By subtraction, we have:

1� ð1þ C2ðT � tÞÞC
α

�� �Z T

t

E

				Z λ
s � Z μ

sk2L2ðΞ;HÞ þ
				Qλ

s � Q
μ
s k2L2ðνÞds

≤
λþ μ
2

Z T

t

E

����AλY
λ
s j2V*dsþ

Z T

t

E

����AμY
μ
s j2V*ds

� �
:

For α larger than (1 þ C2(T � t))C, this provides that there exists D > 0, such thatZ T

t

EkZ λ
s � Z μ

sk2L2ðΞ;HÞ þ jQλ
s � Q

μ
s j2L2ðνÞds≤D

λþ μ
2

Z T

t

E

����AλY
λ
s j2V *dsþ E

����AμY
μ
s j2V*ds

� �
:

By using the same idea for the jump part and plugging in (19), we deduce that

EjY λ
t � Y μ

t j2H ≤D
λþ μ
2

� � Z T

t

E

����AλY
λ
s j2V *dsþ

Z T

t

E

����AμY
μ
s j2V *ds

� �
:

Using thatAλ andAμ , we verify the boundedness condition introduced in Remark 3.5, and the
result holds.
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Remark 4.2. By using Lemma 3.4, for λ goes to 0, we prove that (Yλ, Zλ, Qλ) goes to the triplet
(Y, Z, Q) in the space L2(Ω, H) 3 L2(Ξ, H) 3 L2(ν).
The following theorem shows that the limit (Y, Z, Q) is a solution of equation (12).

Theorem 4.3. Under Hyp.1, we have

supt∈½0;T�EjYt � Y λ
t j2H þ

Z T

t

EkZ s � Z λ
sk2L2ðΞ;HÞdsþ

Z T

t

EjQλ
s � Qsj2L2ðνÞds→ 0: (20)

where (Y, Z, Q) ∈ L2(Ω, H) 3 L2(Ξ, H) 3 L2(ν) is the unique solution of (12).
Proof. Proposition 4.1 yields ðY λÞλ≥0 and ðZ λÞλ≥0 which are predictable Cauchy family

approximating equations in complete spaces L2(Ω, H) and L2(Ξ, H) and ðQλÞλ≥0, a
progressively measurable Cauchy family approximating equations in L2(ν); then there exists
a predictable processes Y, Z and Q, respectively F-progressively measurable such that the

sequences ðY λÞλ≥0 and ðZ λÞλ≥0 and ðQλÞλ≥0 converge, respectively, toward Y in L2(Ω, H) Z in
L2(Ξ, H) and Q in L2(ν).
Now, it is sufficient to prove that this triplet (Y, Z, Q) coincides with the solution of (12).
Therefore,

E Yt−X þ
Z T

t

AYu þ f ðu;Yu; ZuÞduþ
Z T

t

ZudWu þ
Z T

t

Z
E

Qu
~Nðdu; dxÞ

����
����
2

H

≤ 2EjYt � Y λ
t j2H þ 2E Y λ

t � X þ
Z T

t

AYu

����
þ f ðu;Yu; ZuÞduþ

Z T

t

Z udWu þ
Z T

t

Z
E

QsðxÞ~Nðds; dxÞ
����
2

H

≤ 8 E

Z T

t

AYu−AλY
λ
udu

����
����
2

H

þE

Z T

t

�
f ðu;Yu; Zu;QuÞ−f

�
u;Y λ

u; Z
λ
u;Q

λ
u

��
du

����
����
2

H

"

þ E

Z T

t

�
Zu−Z

λ
u

�
dWu

����
����
2

H

þE

Z T

t

Z
E

�
Qu−Q

λ
u

�
~Nðdu; dxÞ

����
����
2

H

#
þ 2EjYt � Y λ

t j2H

¼ 8½I 1 þ I 2 þ I 3 þ I 4� þ 2I 5:

We estimate each term separately. First note that, thanks to Hille Yosida approximation and
[[17], Lemma 3.9], we have

limλ→0Aλx ¼ Ax; for all x∈DðAÞ: (21)

then

I 1 ≤ 2 E

Z T

t

Aλ

�
Yu−Y

λ
u

��� ��2
H
du

�
þ E

��� Z T

t

ðA−AλÞYuj j2Hdu
�

≤

Z T

t

h
� ~c2E

���Yu � Y λ
uj2V þ c1E

���Yu � Y λ
uj2H

i
ds

≤ C

Z T

t

E

����Yu � Y λ
uj2H

�
ds→ 0
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when λ → 0 using Proposition 4.1. The term I2 is estimated by applying the Lipschitz
condition with respect to Cauchy Schwartz inequality, and this yields

I 2 ≤ 2E

Z T

t

�
f ðu;Yu; Zu;QuÞ−f

�
u;Y λ

u; Z
λ
u;Q

λ
u

��
du

����
����
2

H

≤ ðT � tÞE
Z T

t

f ðu;Yu; Zu;QuÞ−f
�
u;Y λ

u; Z
λ
u;Q

λ
u

��� ��2
H
du

≤ CðT � tÞE
Z T

t

��Yu−Y
λ
u

��2
H
þ ��Zu−Z

λ
u

��2
L2ðΞ;HÞ þ

��Qu−Q
λ
u

��2
L2ðνÞ

� �
du

→ 0

where λ → 0.
Finally, the terms I3, I4 and I5 are covered by Proposition 4.1. Then the results holds.

Corollary 4.4. Assume thatHyp.1 holds, then there exists a unique triplet (Y, Z, Q) ∈ L2(Ω,
H) 3 L2(Ξ, H) 3 L2(ν) which satisfies (12), such that:

supt∈½0;T�E
��Yt−Y

λ
t

��2
H
þ
Z T

t

EkZ s � Z λ
sk2L2ðΞ;HÞdsþ

Z T

t

Z
E

EjQλ
s � Qsj2L2ðνÞds≤Cλ: (22)

Proof. Thanks to Proposition 4.1, we compute:

supt∈½0;T�EjY λ
t � Ytj2H þ

Z T

t

EkZ s � Z λ
sk2L2ðΞ;HÞdsþ

Z T

t

EjQλ
s � Qsj2L2ðνÞds≤ 2supt∈½0;T�EjY λ

t

� Y μ
t j2H þ 2supt∈½0;T�EjY μ

t � Ytj2H þ 2

Z T

t

EkZ μ
s � Z sk2L2ðΞ;HÞdsþ 2

Z T

t

EkZ λ
s

� Z μ
sk2L2ðΞ;HÞdsþ 2

Z T

t

EjQμ
s � Qsj2L2ðνÞdsþ 2

Z T

t

EjQλ
s � Q

μ
s j2L2ðνÞds≤ 2Dðλþ μÞ

þ 2supt∈½0;T�EjY μ
t � Ytj2H þ 2

Z T

t

EkZ μ
s � Z sk2L2ðΞ;HÞdsþ 2

Z T

t

EjQμ
s � Qsj2L2ðνÞds:

Then, when μ goes to zero, applying Lebesgue dominated convergence theorem yields:

supt∈½0;T�EjYt � Y λ
t j2H þ

Z T

t

EkZ s � Z λ
sk2L2ðΞ;HÞdsþ

Z T

t

EjQλ
s � Qsj2L2ðνÞds≤ 2Dλ:

Example 4.5. Let an open set Λ⊂Rd, and denote by C
∞

0 ðΛÞ the set of all infinitely
differentiable real valued functions defined on Λ with compact support. For u∈C

∞

0 ðΛÞ let
us define

kuk1;2d
Z ����uðξÞj2 þ ���ΔuðξÞj2�dξ� �

1

2
:

Let us define H 1;2
0 ðΛÞ by the completion of C∞

0 ðΛÞwith respect to k $k1,2. Then, for A5 �Δ

and H 1;2
0 ⊂L2

⊂ ðH 1;2
0 Þ*, A satisfies (L1).

Proof. For the detailed proof, we refer to [28] [p. 62].
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Example 4.6. [27] For the case V 5 H 5 V*. If A is a Lipschitz function, the Yosida
approximation [8] [Proposition 2.3] is given by

Aλx ¼ 1

λ
ðx� J λxÞ; x∈H : (23)

where the resolvent Jλ of A is defined on H by

J λ ¼ ðI þ λAÞ−1: (24)

A satisfies (L1).

Proof. For more details, we refer to [[28], p. 59].

Example 4.7. [28] Let p > 2,Γ∈Rn, let VdLp(Γ), Hd L2(Γ) andV*d
�
L

p
p−1ðΓÞ

�
, we define

A: D(A) 5 V → V*, by Aud � ujujp�2, u ∈ V. Then, A satisfies (L1).

Proof. For a detailed proof, we refer to [28] [p. 61] [].
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