Search results

1 – 4 of 4
Open Access
Article
Publication date: 16 February 2023

Patrícia Becsky-Nagy and Balázs Fazekas

Venture capital (VC) is an essential element in healthy entrepreneurial environments; therefore, many countries in developing entrepreneurial economies support the industry via…

1030

Abstract

Purpose

Venture capital (VC) is an essential element in healthy entrepreneurial environments; therefore, many countries in developing entrepreneurial economies support the industry via direct or indirect government interventions. The purpose of this study is to examine through the example of the Hungarian market, whether direct or hybrid state involvement has contributed more to the growth of the invested enterprises. The findings are relevant in the design of government VC schemes and in the contracts mitigating the moral hazards inherent in government funding.

Design/methodology/approach

The basis of empirical research is a unique hand-collected database covering Hungarian government-backed VC (GVC) investments. Based on the financial data of investee firms, the authors investigate whether firms financed by hybrid VC involving market participants are able to outperform firms that receive pure public financing using panel regression.

Findings

Based on Hungarian evidence, hybrid VC-backed firms generated lower growth and employment than their purely government-backed peers. Both schemes showed meagre innovation activity. The conclusion is that because of the conflict of private and economic policy objectives in hybrid financing, the exposure of hybrid risk capital to moral hazard is higher than that of pure public financing. Private interests in hybrid funds can only improve investment efficiency if they are structured along the lines of market-based independent financial intermediation and the contracts imitate the ones existing amongst limited and general partners in private schemes.

Research limitations/implications

The research covers the data of Hungarian government-backed firms by tracking the full range of 86 investments made in the purely government scheme and 340 firms that received funding in the hybrid scheme. The research focuses on two government initiatives, and the results are influenced by the specific regulation of the programs; therefore, the results cannot be generalized for all government agendas; they are indicative in the designs of the agendas.

Originality/value

There is a limited number of empirical studies investigating the impact of VC in developing markets, especially in the Central and Eastern Europe region. This firm-level research on the impact of public VC can help improve the effectiveness of development policies. By analysing the entirety of investments of a VC program that is near to its completion, the authors provide new insight into the efficiency and prospects of GVC schemes in the region.

Article
Publication date: 6 February 2017

Attila Geczy, Daniel Nagy, Balazs Illes, Laszlo Fazekas, Oliver Krammer and David Busek

The paper aims to present an investigation of heating during vapour phase soldering (VPS) on inclined printed circuit board (PCB) substrates. The PCB is a horizontal rectangular…

Abstract

Purpose

The paper aims to present an investigation of heating during vapour phase soldering (VPS) on inclined printed circuit board (PCB) substrates. The PCB is a horizontal rectangular plate from the aspect of filmwise condensation with a given inclination setting.

Design/methodology/approach

The paper focuses on the measurement of temperature distribution on the PCBs with a novel setup immersed in the saturated vapour space. The measuring instrumentation is optimized to avoid and minimize vapour perturbing effects.

Findings

The inhomogeneity of the heating is presented according to the lateral dimensions of the PCB. The inclination improves temperature uniformity, improves heat transfer efficiency; however, a minor misalignment may affect the flow and result in uneven heating.

Practical implications

The results can be implemented for practical improvements in industrial ovens with the use of intended inclination. The improvements may consequently point to more efficient production and better joint quality.

Originality/value

The novel method can be used for deeper investigation of inclination during and can be complemented with numerical calculations. The results highlight the importance of precise PCB holding instrumentation in VPS ovens.

Details

Soldering & Surface Mount Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 December 2018

Balázs Illés, Attila Géczy, Bálint Medgyes and Gábor Harsányi

This paper aims to present a review of the recent developments in vapour phase soldering (VPS) technology. This study focuses on the following topics: recent developments of the…

Abstract

Purpose

This paper aims to present a review of the recent developments in vapour phase soldering (VPS) technology. This study focuses on the following topics: recent developments of the technology, i.e. soft and vacuum VPS; measurement and characterization methods of vapour space, i.e. temperature and pressure; numerical simulation of the VPS soldering process, i.e. condensate layer and solder joint formation; and quality and reliability studies of the solder joints prepared by VPS, i.e. void content and microstructure of the solder joints.

Design/methodology/approach

This study was written according to the results of a wide literature review about the substantial previous works in the past decade and according to the authors’ own results.

Findings

Up to now, a part of the electronics industry believes that the reflow soldering with VPS method is a significant alternative of convection and infrared technologies. The summarized results of the field in this study support this idea.

Research limitations/implications

This literature review provides engineers and researchers with understanding of the limitations and application possibilities of the VPS technology and the current challenges in soldering technology.

Originality/value

This paper summarizes the most important advantages and disadvantages of VPS technology compared to the other reflow soldering methods, as well as points out the necessary further developments and possible research directions.

Details

Soldering & Surface Mount Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 2018

Balázs Illés, Agata Skwarek, Attila Géczy, László Jakab, David Bušek and Karel Dušek

The vacuum vapour phase soldering method was investigated by numerical simulations. The purpose of this study was to examine the temperature changes of the solder joints during…

Abstract

Purpose

The vacuum vapour phase soldering method was investigated by numerical simulations. The purpose of this study was to examine the temperature changes of the solder joints during the vapour suctioning process. A low pressure is used to enhance the outgassing of the trapped gas within the solder joints, which otherwise could form voids. However, the system loses heat near the suction pipe during the suctioning process, and it can result in preliminary solidification of the solder joints before the gas could escape.

Design/methodology/approach

A three-dimensional numerical flow model based on the Reynolds averaged Navier–Stokes equations with the standard k-e turbulence method was developed. The effect of the vapour suctioning on the convective heat transfer mechanism was described by the model. Temperature change of the solder joints was studied at the mostly used substrate and component combinations, as well as at different system settings.

Findings

In the function of the substrate thickness and the component size, the solder joints can lose large amount of heat during the void reduction process, which leads to preliminary solidification before the entrapped gas voids could be removed.

Research limitations/implications

The results provide setting information of vacuum vapour phase technology for appropriate and optimal applications.

Originality/value

The relationship between low pressure generation and convective heat transfer mechanism during vacuum vapour phase soldering has not been studied yet. The possible negative effects of the vapour suctioning process on the solder joint temperature are unknown.

Details

Soldering & Surface Mount Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 4 of 4