Search results

1 – 8 of 8
Article
Publication date: 4 March 2019

Yu Qiu, Baoquan Li, Wuxi Shi and Yimei Chen

The purpose of this paper is to present a visual servo tracking strategy for the wheeled mobile robot, where the unknown feature depth information can be identified simultaneously…

Abstract

Purpose

The purpose of this paper is to present a visual servo tracking strategy for the wheeled mobile robot, where the unknown feature depth information can be identified simultaneously in the visual servoing process.

Design/methodology/approach

By using reference, desired and current images, system errors are constructed by measurable signals that are obtained by decomposing Euclidean homographies. Subsequently, by taking the advantage of the concurrent learning framework, both historical and current system data are used to construct an adaptive updating mechanism for recovering the unknown feature depth. Then, the kinematic controller is designed for the mobile robot to achieve the visual servo trajectory tracking task. Lyapunov techniques and LaSalle’s invariance principle are used to prove that system errors and the depth estimation error converge to zero synchronously.

Findings

The concurrent learning-based visual servo tracking and identification technology is found to be reliable, accurate and efficient with both simulation and comparative experimental results. Both trajectory tracking and depth estimation errors converge to zero successfully.

Originality/value

On the basis of the concurrent learning framework, an adaptive control strategy is developed for the mobile robot to successfully identify the unknown scene depth while accomplishing the visual servo trajectory tracking task.

Details

Assembly Automation, vol. 39 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 April 2024

Yimei Chen, Yixin Wang, Baoquan Li and Tohru Kamiya

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm…

Abstract

Purpose

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.

Design/methodology/approach

This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.

Findings

The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.

Originality/value

In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 May 2024

Wenchao Zhang, Enming Cui, Cheng Wang, Baoquan Zhang, Jiwei Jin, Pengfei Zhang, Wending Wu and Mingwei Wang

An investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material…

Abstract

Purpose

An investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material removal and crack formation, through the use of ultrasonic-assisted grinding.

Design/methodology/approach

A mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. A series of simulations and experiments were conducted to investigate the impact of process parameters on crack depth, surface roughness, and surface topography during ultrasonic-assisted surface and axial grinding. Additionally, the mechanism of crack formation was explored.

Findings

During ultrasonic-assisted grinding, the average grinding forces are between 0.4–1.0 N, which is much smaller than that of ordinary grinding (1.0–3.5 N). In surface grinding, the maximum surface stresses between the workpiece and the tool gradually decrease with the tool speed. The surface stresses of the workpiece increase with the grinding depth, and the depth of subsurface cracks increases with the grinding depth. With the increase of the axial grinding speed, the subsurface damage depth increases. The roughness increases from 0.780um/1.433um.

Originality/value

A mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. The deformation involved in the grinding process is large, and the FEM-SPH modeling method is used to solve the problem that the results of the traditional finite element method are not convergent and the calculation efficiency is low.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 September 2019

Xuan Wang

In order to find a way to create the artistic conception of modern landscape space, the spatial analysis of Daguanyuan is carried out from the perspective of literature in order…

Abstract

In order to find a way to create the artistic conception of modern landscape space, the spatial analysis of Daguanyuan is carried out from the perspective of literature in order to find out the method of creating the artistic conception of modern landscape space. Adopting the method of general to special, from theory to practice, the argument with special significance is analyzed from the most common phenomena, and this argument is applied to the method of practical cases. The results show that Daguanyuan space in literature needs the audience's ability to understand words, the perception of space in film and television needs the audience's strong memory and imaginative thinking, while the perception of Daguanyuan space in garden art needs only basic discrimination ability. After analyzing the effect of Daguanyuan space construction from the literary perspective, it is believed that the writing techniques of starting point - development - climax - ending, wanting to carry forward first and restraining first, and reserving foreshadows in literature can be used for reference in modern landscape design.

Details

Open House International, vol. 44 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 4 March 2014

Xian-jun Liu

It is a very prominent problem that Chinese universities lack school-running characteristics. In the past ten years, because of undergraduate teaching assessment requirements of…

489

Abstract

Purpose

It is a very prominent problem that Chinese universities lack school-running characteristics. In the past ten years, because of undergraduate teaching assessment requirements of the Ministry of Education, universities attach great importance to school-running characteristics. What is the reality and how to improve the effectiveness of creating the school-running characteristics of universities? It is a problem that needs to be solved. The purpose of this paper is to discuss these issues.

Design/methodology/approach

Using the survey method, literature study, case studies and other methods, this study reviewed ten years of school-running characteristics construction and explored some laws of creating school-running characteristics.

Findings

This study found although universities in China are beginning to attach great importance to the school-running characteristics, but they are still staying in the summarization of characteristics. School-running characteristics are very rough. Creating school-running characteristics are mainly efforts responding to the superior government. Creating school-running characteristics should be based on category characteristic. Universities need to change in competition and create characteristics within its history and culture. Universities need to refine the core idea of education, develop a big picture and then renew them in the assessment cycle.

Originality/value

The originality of this study was that it put forward some new laws including changing from summarizing to creating its own school-running characteristics, putting category characteristic as the prerequisite and considering the core idea of education as the focus of school-running characteristics. This research will enrich the theory building of higher education research and has some value in promoting the creation of school-running characteristics.

Details

International Journal of Educational Management, vol. 28 no. 3
Type: Research Article
ISSN: 0951-354X

Keywords

Article
Publication date: 23 October 2023

Bin Chen, Hongxia Cao and Nina Wan

The purpose of this paper is to study the insulation structure optimization method of multiwinding high-frequency transformer (HFT).

Abstract

Purpose

The purpose of this paper is to study the insulation structure optimization method of multiwinding high-frequency transformer (HFT).

Design/methodology/approach

This paper takes 100 kW, 10 kHz multiwinding HFT as the research object. First, the distribution of electric field strength within the core window of multiwinding HFT with different winding configurations is simulated by the electrostatic field finite element method. The symmetrical hybrid winding structure with minimum electric field strength is selected as the insulation design. To reduce the electric field strength at the end region of the winding, the electrostatic ring and angle ring are designed based on the response surface method.

Findings

The optimal results show that the maximum electric field strength can be reduced by 15.4%, and the low voltage stress can be achieved.

Originality/value

The above research provides guidance and basis for the optimal design of insulation structure of multiwinding HFT.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Hongbo Qiu, Wenfei Yu, Bingxia Tang, Weili Li, Cunxiang Yang and Yanfeng Wang

Taking a 2,000 r/min 10 kW permanent magnet motor as an example, the purpose of this paper is to study the influence of driving modes on the performance of permanent magnet motor…

Abstract

Purpose

Taking a 2,000 r/min 10 kW permanent magnet motor as an example, the purpose of this paper is to study the influence of driving modes on the performance of permanent magnet motor at limit conditions, and researched the variation mechanism of motor performance influenced by different driving modes.

Design/methodology/approach

A two-dimensional electromagnetic field model of the permanent magnet motor was established, and a rectangular-wave driving circuit was built. By using the finite element method, the electromagnetic field, current, harmonic content and eddy current loss were calculated when the motor operated at rated load and limit load. On the basis of the motor loss calculation, the temperature field of the motor operating at rated condition and limit condition was researched, and the factors that influence motor limit overload capacity were analyzed. By analyzing the motor loss variation at different load conditions, the change mechanism of the motor temperature field was determined further. Combined with the related experiments, the correctness of the above analysis was verified.

Findings

Permanent magnet synchronous motor (PMSM) driven by sine wave is better compared with brushless direct current motor (BLDCM) driven by rectangular wave in reducing the magnetic field harmonics, motor losses and optimizing the temperature distribution in the motor. The method driven by sine wave could improve the motor output performance including the motor efficiency and the motor overload capacity. The winding temperature is the most important factor that limits the output capability of PMSM operating for a long time. However, because of the large rotor eddy current losses, the permanent magnet temperature is the most important factor that limits the output capability of BLDCM operating for a long time.

Practical implications

The influence of driving modes on the motor magnetic field, losses and temperature distribution, efficiency and overload capacity was determined, and the influence mechanism was also analyzed. Combined with the analysis of the electromagnetic and temperature fields, the advantages of different driving modes were presented. This study could provide an important basis for the design of permanent magnet motors with different driving modes, and it also provides reference for the application of permanent magnet motor.

Originality/value

This paper presents the influence of driving modes on permanent magnet motors. The limit output capacity of the motor with different driving modes was studied, and the key factors limiting the motor output capability were obtained.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Hongbo Qiu, Wenfei Yu, Shuai Yuan, Bingxia Tang and Cunxiang Yang

The impact of the loop current (LC) on the motor magnetic field in the analysis of the inter-turn short circuit (ITSC) fault is always ignored. This paper made a comparative study…

Abstract

Purpose

The impact of the loop current (LC) on the motor magnetic field in the analysis of the inter-turn short circuit (ITSC) fault is always ignored. This paper made a comparative study on the electromagnetic field of permanent magnet synchronous motors (PMSM). The purpose of this study is to explore the necessary of the LC existing in the fault analysis and the electromagnetic characteristics of the PMSM with the ITSC fault when taking into account the LC.

Design/methodology/approach

Based on the finite element method (FEM), the fault model was established, and the magnetic density of the fault condition was analyzed. The induced electromotive force (EMF) and the LC of the short circuit ring were studied. The three-phase induced EMF and the unbalance of the three-phase current under the fault condition were studied. Finally, a prototype test platform was built to obtain the data of the fault.

Findings

The influence of the fault on the magnetic density was obtained. The current phase lag when the ITSC fault occurs causes the magnetic enhancement of the armature reaction. The mechanism that LC hinders the flux change was revealed. The influence of the fault on the three-phase-induced EMF symmetry, the three-phase current balance and the loss was obtained.

Originality/value

The value of the LC in the short circuit ring and the influence of it on the motor electromagnetic field were obtained. On the basis of the electromagnetic field calculation model, the sensitivity of the LC to the magnetic density, induced EMF, current and loss were analyzed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 8 of 8