Search results

1 – 10 of over 4000
Article
Publication date: 8 March 2024

Lijie Ma, Xinhui Mao, Chenrui Li, Yu Zhang, Fengnan Li, Minghua Pang and Qigao Feng

The purpose of this study is to reveal the friction reduction performance and mechanism of granular flow lubrication during the milling of difficult-to-machining materials and…

Abstract

Purpose

The purpose of this study is to reveal the friction reduction performance and mechanism of granular flow lubrication during the milling of difficult-to-machining materials and provide a high-performance lubrication method for the precision cutting of nickel-based alloys.

Design/methodology/approach

The milling tests for Inconel 718 superalloy under dry cutting, flood lubrication and granular flow lubrication were carried out, and the milling force and machined surface quality were used to evaluate their friction reduction effect. Furthermore, based on the energy dispersive spectrometer (EDS) spectrums and the topographical features of machined surface, the lubrication mechanism of different granular mediums was explored during granular flow lubrication.

Findings

Compared with flood lubrication, the granular flow lubrication had a significant force reduction effect, and the maximum milling force was reduced by about 30%. At the same time, the granular flow lubrication was more conducive to reducing the tool trace size, repressing surface damage and thus achieving better surface quality. The soft particles had better friction reduction performance than the hard particles with the same particle size, and the friction reduction performance of nanoscale hard particles was superior to that of microscale hard particles. The friction reduction mechanism of MoS2 and WS2 soft particles is the mending effect and adsorption film effect, whereas that of SiO2 and Al2O3 hard particles is mainly manifested as the rolling and polishing effect.

Originality/value

Granular flow lubrication was applied in the precision milling of Inconel 718 superalloy, and a comparative study was conducted on the friction reduction performance of soft particles (MoS2, WS2) and hard particles (SiO2, Al2O3). Based on the EDS spectrums and topographical features of machined surface, the friction reduction mechanism of soft and hard particles was explored.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 October 2023

Sara Pope and Robert L. Jackson

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear…

Abstract

Purpose

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear test has been established, it can be used to test any combination of materials or coatings. The effectiveness of several different test methods will also be evaluated, including the sample height, surface roughness and mass difference. In addition, the current work will observe the differences between applying sand before the samples are brought into contact or after. The wear rates obtained from these tests could also be used to predict the wear of other components in similar abrasive particulate environments.

Design/methodology/approach

A modified block-on-flat wear test of anodized aluminum on hard coat anodized aluminum was used to study this. The experiments were performed with and without sand to study the effects of the sand. Two methods of adding sand were also evaluated. Weighing and profilometry were used to study the differences between the tests.

Findings

Wear rates have been calculated based on both the change in the masses of the samples and the change in the height between the upper and lower samples over the course of each test. The wear rates from the change in the masses are repeatable with and without sand, but the results for the change in height show no repeatability without sand. In addition, only in the presence of sand do the trends for the two methods agree. The wear rate was found to be non-linear as a function of load and therefore not in agreement with Archard’s Wear Law. The wear rate also increased significantly when sand was present in the contact for the duration of the test. The sand appears to change the wear mechanism from an adhesive to an abrasive mechanism. Black wear particles formed both when there was sand and when there was not sand. The source of these particles has been investigated but not determined.

Originality/value

This work has not been previously published and is the original work of the authors.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 May 2009

A.K. Khan, B.C. Ray, J. Maiti and S.K. Dolui

The purpose of this paper is to study the effect of monomer composition in core‐shell latex prepared from co‐polymer of styrene‐butylacrylate (BA)‐methyl methacrylate (MMA) and…

Abstract

Purpose

The purpose of this paper is to study the effect of monomer composition in core‐shell latex prepared from co‐polymer of styrene‐butylacrylate (BA)‐methyl methacrylate (MMA) and their paint properties.

Design/methodology/approach

The core‐shell latex was prepared by a stepwise semi‐batch emulsion polymerisation. A set of dispersion was made with the different core‐shell compositions. The core phase consists of a copolymer of styrene‐BA‐acrylic acid (AA) and the shell phase consists of a copolymer of MMA‐AA. The properties of latex were determined by solid content, viscosity, pH and particle size. Subsequently, emulsion paint (PVC‐37 per cent and NVM‐53 per cent) was prepared using core‐shell latex. The paint properties were determined by block resistance, gloss, elongation at break, etc. The particle morphology was characterised with transmission electron microscope (TEM).

Findings

Core‐shell structure of latex was confirmed by TEM. The performance of core‐shell latex has been optimised and the best combination achieved with 25‐40 per cent of hard phase in core‐shell latex.

Research limitations/implications

Although the core‐shell structured latex was prepared from co‐polymer of styrene‐BA‐MMA monomer, the system could be extended with other monomers depending on the end use of surface coating.

Practical implications

The paint industry may use this method to improve paint properties.

Originality/value

The paper shows that, by use of core‐shell latex, it is possible to achieve high‐block resistance, hardness, elasticity and gloss.

Details

Pigment & Resin Technology, vol. 38 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 July 2021

Mohammed Fahad and Bavanish B.

Aviation field requires a material with greater tribological characteristics to withstand the critical climate conditions. Hence, it is of paramount importance to enhance the wear…

106

Abstract

Purpose

Aviation field requires a material with greater tribological characteristics to withstand the critical climate conditions. Hence, it is of paramount importance to enhance the wear resistance of material. AZ91D magnesium alloy is a light weight material used in the aviation field for the construction work. The purpose of this study is to augment the wear properties of AZ91D alloy by reinforcing with hard particles such as tungsten carbide (WC) and silicon dioxide (SiO2).

Design/methodology/approach

In this work, three types of composites were fabricated, namely, AZ91D – WC, AZ91D – SiO2 and AZ91D – (WC + SiO2) by ball milling method, and the tribological properties were analyzed using pin-on-disc apparatus.

Findings

Results showed that the hardness of AZ91D alloy was greatly improved due to the reinforcing effects of WC and SiO2 particles. Wear study showed that wear rate of AZ91D alloy and its composites increased with the increase of applied load due to ploughing effect and decreased with the increase of sliding speed owing to the formation of lubricating tribolayer. Further, the AZ91D – (WC + SiO2) composite exhibited the lower wear rate of 0.0017 mm3/m and minimum coefficient of friction of 0.33 at a load of 10 N and a sliding speed of 150 mm/s due to the inclusion of hybrid WC and SiO2 particles. Hence, the proposed AZ91D – (WC + SiO2) composite could be a suitable candidate to be used in the aviation applications.

Originality/value

This work is original which deals with the effect of hybrid particles, i.e. WC and SiO2 on the wear performance of the AZ91D magnesium alloy composites. The literature review showed that none of the studies focused on the reinforcement of AZ91D alloy by the combination of carbide and metal oxide particles as used in this investigation.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 August 2021

Deepak Sharma and Rajesh Kumar Bhushan

Parts that are to be used in aircraft, satellites, automobiles and ships should have sound microstructure. Components made from AA6082/Si3N4 and AA6082/SiC composites are in…

Abstract

Purpose

Parts that are to be used in aircraft, satellites, automobiles and ships should have sound microstructure. Components made from AA6082/Si3N4 and AA6082/SiC composites are in demand from industries. Hence, these components are to be fabricated by suitable technique at the appropriate value of process parameters. The purpose of this paper is Microstructure analysis of AA6082/Si3N4 and AA6082/SiC composites

Design/methodology/approach

AA6082/Si3N4 and AA6082/SiC composites are successfully fabricated using the stir casting process. Their microstructures have been analyzed. This has been done at different magnification. The effect of the addition of Si3N4 and SiC particles in the 6082 aluminum alloy is investigated. Microstructure of AA6082/Si3N4 and AA6082/SiC composites are also compared. Results show that Si3N4 and SiC particles have good wettability with AA6082. These reinforcement particles are homogeneously distributed in the matrix of AA6082.

Findings

There are no adverse effects of reactions in the microstructure of AA6082/Si3N4 and AA6082/SiC composites. There is not much difference between the distribution and interfacial characteristics of Si3N4 and SiC particles. AA6082/Si3N4 and AA6082/SiC composites have good properties. This is high strength at low density. Due to which they become suitable for the aircraft and space industry. So far, SiC, Al2O3 and tungsten carbide have been mostly used as reinforcements with different grades of aluminum alloy.

Originality/value

Not much experimental work is found with Si3N4 and SiC particles as reinforcement with AA6082. The novelty of this research work is that an effort has been made to fabricate AA6082/Si3N4 and AA6082/SiC composites at such values of process parameters, by stir casting process, so that sound and defect free microstructure is obtained. Microstructure of AA6082/Si3N4 and AA6082/SiC composites is also compared, to find which is better.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 September 2013

S. Venkat Prasat and R. Subramanian

The purpose of this paper is to explore the use of fly ash and graphite particles as low cost reinforcing materials for improved wear resistance, enhanced mechanical properties…

Abstract

Purpose

The purpose of this paper is to explore the use of fly ash and graphite particles as low cost reinforcing materials for improved wear resistance, enhanced mechanical properties and reduction in density of hybrid composites.

Design/methodology/approach

The AlSi10Mg/fly ash/graphite (Al/FA/Gr) hybrid composite was synthesised by stir casting method. The dry sliding wear and friction behaviour of hybrid composites were studied using pin-on-disc machine by varying parameters like load and weight fraction of fly ash, and compared with the base metal alloy and aluminium-graphite composite. The tests were conducted with a constant sliding speed of 2 m/s and sliding distance of 2,400 m.

Findings

The hybrid composites exhibit higher hardness, higher tensile strength and lower density when compared to unreinforced alloy and aluminium-graphite composite. The incorporation of fly ash and graphite particles as reinforcements caused a reduction in the wear rate and coefficient of friction (COF) of the hybrid composites. The improvement in the tribological characteristics occured due to the load carrying capacity of hard fly ash particles and the formation of a lubricating film of graphite between the sliding interfaces. The wear rates and COF of unreinforced aluminium alloy and composites increase with an increase in the applied normal load. The wear rates and COF of hybrid composites decrease with an increase in the fly ash content. 9 wt.% fly ash and 3 wt.% graphite reinforced hybrid composite exhibited the highest wear resistance and lowest COF at all applied loads. Abrasive wear and delamination were dominant in the mild wear regime of aluminium alloy and composites. Due to subsurface deformation and crack propagation, plate-like wear debris were generated during delamination wear. In the severe wear regime, the dominant wear mechanism was adhesive wear with formation of transfer layers.

Practical implications

It is expected that these findings will contribute towards the development of lightweight and low cost aluminium products with improved tribological and mechanical properties.

Originality/value

The wear and friction data have been made available in this article for the use of Al/FA/Gr hybrid composites in tribological applications.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 August 2014

De-Xing Peng, Yuan Kang and Yu-Jun Huang

The purpose of this paper is to evaluate the wear performance of carbon steel cladded with TiC powders by gas tungsten arc welding method. Because of poor wear resistance, carbon…

Abstract

Purpose

The purpose of this paper is to evaluate the wear performance of carbon steel cladded with TiC powders by gas tungsten arc welding method. Because of poor wear resistance, carbon steels have limited industrial applications as tribological components.

Design/methodology/approach

The cladding microstructures were characterized by optical microscope, scanning electron microscope (SEM) and X-ray energy dispersive spectrometer. The wear behavior of the clad layer was studied with a block-on-ring tribometer.

Findings

The experimental results revealed that the metallurgical interface provided an excellent bond between the cladding and the carbon steel substrate. The cladding revealed no porosity or cracking, and particles were evenly distributed throughout the cladding layer. Hardness was increased from HRc 6.6 in the substrate to HRc 62 in the cladded layer due to the presence of the hard TiC phase.

Originality/value

The experiments confirm that the cladding surfaces of TiC particles reduce wear rate and friction. Increasing TiC contents also improves hardness and wear resistance at room temperature and under dry sliding wear conditions.

Details

Industrial Lubrication and Tribology, vol. 66 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 June 2015

Amit Sharma, Manish Garg and Satnam Singh

The purpose of this paper is to develop hybrid aluminum metal matrix composite by stir casting process, reinforced with graphite and hard boron carbide particles to enhance the…

Abstract

Purpose

The purpose of this paper is to develop hybrid aluminum metal matrix composite by stir casting process, reinforced with graphite and hard boron carbide particles to enhance the wear resistance. An attempt is made to optimize the wear (weight loss) and coefficient of friction (COF) by considering three factors, i.e. normal load, track diameter and sliding speed which were varied at three different levels.

Design/methodology/approach

The effect of graphite and boron carbide on microhardness was studied by adding them in varying percentages. After determining the best combination of hybrid reinforcements, optimization of wear (weight loss) and COF was carried out at various levels of considered factors. Taguchi design of experiments was used using the software “Minitab 16.1”. ANOVA was used to analyze the effect of various parameters on wear and COF. To validate the results, mathematical modeling was carried out in terms of regression equations and results obtained by regression equations.

Findings

The results revealed that the lower weight percentage of graphite (3 per cent) and boron carbide (1 per cent) significantly improved microhardness of developed composites. Results of ANOVA revealed that normal load was the main contributing factor for wear and COF. The results obtained by regression equations and confirmatory tests were within the results obtained by ANOVA.

Originality/value

To the best of the author’s knowledge, very less work has been reported on optimization of wear and COF using hybrid reinforcement particles of graphite and boron carbide.

Details

Industrial Lubrication and Tribology, vol. 67 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 September 2020

Sundarrajan D., Pitchipoo Pandian and Manoharan Sembian

This paper aims to deal with the synergistic effect of steel slag-molybdenum disulfide particles on fade-recovery performances of non-asbestos organic friction material.

Abstract

Purpose

This paper aims to deal with the synergistic effect of steel slag-molybdenum disulfide particles on fade-recovery performances of non-asbestos organic friction material.

Design/methodology/approach

The brake friction materials were developed by using steel slag and molybdenum disulfide particles as individual and combination in the formulation. The brake friction materials were developed in the form of standard brake pads as per the industrial practice. The physical, mechanical and thermal properties of the developed brake pads were tested as per the industrial standards. The tribological properties were analyzed using the Chase test as per IS2742-Part-4. Worn surface analysis was done using a scanning electron microscope.

Findings

The experimental results indicate that the brake pads filled with a combination of steel slag and molybdenum disulfide showed stable friction and less wear rate due to the synergetic nature of abrasive and lubricant.

Originality/value

This paper explains the influence of steel slag and molybdenum disulfide particles as individual and combined in brake pads formulation to enhance the tribological performance by producing stabilized friction with undulations.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2020-0216/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 September 2019

Sam Joshy, Jayadevan K.R., Ramesh A. and Mahipal D.

In hot forging, a significant amount of forging force is used for overcoming frictional force at the die-billet interface. The high frictional force along with thermomechanical…

Abstract

Purpose

In hot forging, a significant amount of forging force is used for overcoming frictional force at the die-billet interface. The high frictional force along with thermomechanical stress lead to wear, plastic deformation, mechanical fatigue and cracks, which reduce the service life of hot forging dies. Of all these different types of issues, wear is the predominant mode of failure in hot forging dies. This paper aims to describe mechanisms of wear transition in different loads at near forging temperature, occurring during sliding of chromium-based H11 tool steel specimens.

Design/methodology/approach

High temperature pin-on-disc tests are performed with pin specimens machined from bars of X38CrMoV5 steel, heat treated to surface hardness of 40-42 HRc. The disc is made of EN 31 steel with hardness of 60-62 HRc. Tests are performed at constant temperature of 500°C, and the normal load was varied from 20 to 70 N.

Findings

Scanning electron microscopy investigations on worn surface have revealed that wear is primarily due to abrasion and plastic deformation. The test results show an increasing trend in wear rate with increase in load up to 30 N, followed by a reversal in trend until 50 N. This transition in wear rate is caused by development of wear resistant layers, which are formed by compaction of wear debris particles on to the worn surfaces. These compact layers are found to be stable during load range from 40 and 50 N. However, with further increase in load, abrasive wear tracks are observed without any evidence of protective layers. As a result, there is an increase in wear rate with increase in loads above 50 N. In addition, plastic shearing was dominant over abrasive wear at this load regime.

Originality/value

The study on wear behaviour of H11 hot forging steel at 20 to 70 N will be an input to the research in hot forming industries.

Details

World Journal of Engineering, vol. 16 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 4000