Search results

1 – 3 of 3
Article
Publication date: 2 April 2024

Jhumana Akter, Mobasshira Islam and Shuvo Dip Datta

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This…

Abstract

Purpose

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This study aims to determine suitable material and optimum thickness for the insulation layer considering both operational and embodied factors by a comprehensive assessment of the energy, economic and environmental (3E) parameters.

Design/methodology/approach

First, the energy model of an existing building was created by using Autodesk Revit software according to the as-built floor layout to evaluate the impact of five alternative insulating materials in varying thickness values. Second, using the results derived from the model, a thorough evaluation was conducted to ascertain the optimal insulation material and thickness through individual analysis of 3E factors, followed by a comprehensive analysis considering the three aforementioned factors simultaneously.

Findings

The findings indicated that polyurethane with 13 cm thickness, rockwool with 10 cm thickness and EPS with 20 cm thickness were the best states based on energy consumption, cost and environmental footprint, respectively. After completing the 3E investigation, the 15-cm-thick mineral wool insulation was presented as the ideal state.

Practical implications

This study explores how suitable material and thickness of insulating material can be determined in advance during the design phase of a building, which is a lot more accurate and cost-effective than applying insulating materials by assumed thickness in the construction phase.

Originality/value

To the best of the authors’ knowledge, this paper is unique in investigating the advantages of using thermally insulating materials in the context of a mosque structure, taking into account its distinctive attributes that deviate from those of typical buildings. Furthermore, there has been no prior analysis of the cost and sustainability implications of these materials concerning the characteristics of subtropical monsoon climate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 July 2023

Nadira Islam Nila, Jhumana Akter and Md. Mehrab Hossain

Change orders are a typical occurrence in building projects. Change orders indirectly affect labor productivity, resulting in a significant delay in the completion of a building…

Abstract

Purpose

Change orders are a typical occurrence in building projects. Change orders indirectly affect labor productivity, resulting in a significant delay in the completion of a building project. Change orders cause labor productivity losses that are difficult to describe, establish and account for contractors and subcontractors. This study aimed to look at the influence of change orders on labor productivity and develop methods to mitigate their adverse effects.

Design/methodology/approach

To assess the change orders' impact on productivity levels a system dynamic model was developed and devise ways were developed to counteract these negative impacts in this research. The impact of change orders on labor productivity and project time was then controlled using techniques established. Finally, a case study of KUET's hall extension was chosen, and the model and principles developed were implemented.

Findings

This study established that if the project delivery date is set and change orders are occurring often, labor productivity will be impacted. With adequate monitoring and supplemental management techniques, it can be reduced by prolonging the project.

Originality/value

The developed policies aid to mitigate the effect of change orders on labor productivity.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 17 November 2022

Tamanna Islam Meem, Md. Mehrab Hossain and Jhumana Akter

In comparison to other industries, the construction industry is one of the most dangerous industries. Behavior-based safety (BBS) is a common and useful technique for risk…

Abstract

Purpose

In comparison to other industries, the construction industry is one of the most dangerous industries. Behavior-based safety (BBS) is a common and useful technique for risk indicator processing. Almost all studies are based on the BBS checklist, but very few of them focus on the increasing dangers faced by construction workers and the important factors that lead to accidents. This research represents a risk spatiotemporal analysis and visual tracking approach based on BBS and Building Information Modeling (BIM).

Design/methodology/approach

After the literature review, a BBS checklist was developed. Then a survey was conducted based on the BBS checklist and the temporal evolution of risks has been completed. After that, managing the risk with the automatic rule checking (ARC) system using BIM was conducted simultaneously to develop a framework by conducting a case study.

Findings

Based on the grey clustering analysis, this work provides a temporal evolution analysis approach for dynamic analyzing BBS risk. According to the grey relational analysis (GRA) data, the main key factor of risk was the missing guardrail/handrail system. After that, a case study was performed and the system automatically warn in the preconstruction phase that the barrier is missing as the system benefits.

Originality/value

A systematic framework has been provided for risk analysis through which high health and safety performance outcomes can be achieved on construction projects. This study will assist design engineers in addressing the potential danger to employees during the preconstruction stage and monitoring dynamic changes in risk on any construction site.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 3 of 3