Search results

1 – 6 of 6
Article
Publication date: 2 January 2024

Jikai Zhu, Pengyu Li and Jingbo Shao

This study aims to delve into the varying impacts of different types of emotions conveyed through retailers' review request texts on consumers' intention to write a review.

68

Abstract

Purpose

This study aims to delve into the varying impacts of different types of emotions conveyed through retailers' review request texts on consumers' intention to write a review.

Design/methodology/approach

To verify the relationships between these variables, two laboratory experiments were conducted in this study.

Findings

The findings indicate that when accompanied by an objective statement, texts that evoke empathy and favor have a positive influence on consumers' inclination to write a review. Moreover, by examining the underlying mechanism, this study uncovers two interconnected mediators, namely persuasive intent and cognitive (affective) resistance, along with empathy and helping intention. Additionally, the study explores the moderating role of customer satisfaction with the product, shedding light on the contextual factors that influence the effects of emotional cues in review texts.

Originality/value

This research contributes to the literature and practice by focusing on the process of retailers' generating online reviews. This is one of the first studies to systematically examine the effects of emotional text in retailers' review request on consumers' reviewing intention from the perspective of emotional evocation. The experimental findings and the underlying mechanisms emphasize the impact of different types of emotions in retailers' review requests texts on consumers' reviewing intentions. It can help retailers better understand the psychological reactions of consumers when they ask reviews, which provide theoretical support for retailers to design more reasonable asking texts.

Details

Asia Pacific Journal of Marketing and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 13 May 2022

Guozhen Zhang, Rui Nie, Jikai Si, Xiaohui Feng and Changli Wang

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the…

Abstract

Purpose

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the TFSPML machine is analyzed.

Design/methodology/approach

First, the air-gap flux density harmonic characteristics excited by PMs and armature windings are investigated and summarized based on a simple magnetomotive force (MMF)-permeance model. Then, the air-gap field modulation theory is applied in analyzing the air-gap flux density harmonics that contribute to the electromagnetic force. In addition, a simple method for separating the end force of the TFSPML machine is proposed, which is a significant foundation for the comprehensive analysis of this type of machine. As a result, the operation principle of the TFSPML machine is thoroughly revealed.

Findings

The analysis shows that the average electromagnetic force is mainly contributed by the air-gap dominant harmonics, and the thrust force ripple is mainly caused by the end force.

Originality/value

In this paper, the operation principle of the TFSPML machine is analyzed from the perspective of air-gap field modulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 July 2023

Rui Nie, Yaqian Meng, Peixin Wang, Peng Su and Jikai Si

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model…

Abstract

Purpose

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model. Compared with the traditional single degree of freedom motor, normal force characteristics of two-degree-of-freedom direct drive induction motor (2DOFDDIM) is affected by coupling effect when the machine is in a helical motion. To theoretically explain the influence mechanism of coupling effect, this paper conducts a quantitative analysis of the influence of coupling effect on normal force based on the established analytical model of normal force considering coupling effect.

Design/methodology/approach

Firstly, the normal forces generated by 2DOFDDIM in linear motion, rotary motion and helical motion are investigated and compared to prove the effect of the coupling effect on the normal force. During this study, several coupling factors are established to modify the calculation equations of the normal force. Then, based on the multilayer theoretical method and Maxwell stress method, a novel normal force calculation model of 2DOFDDIM is established taking the coupling effect into account, which can easily calculate the normal force of 2DOFDDIM under different motions conditions. Finally, the calculation results are verified by the results of 3D finite element model, which proves the correctness of the established calculating model.

Findings

The coupling effect produced by the helical motion of 2DOFDDIM affects the normal force.

Originality/value

In this paper, the analytical model of the normal force of 2DOFDDIM considering the coupling effect is established, which provides a fast calculation for the design of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 August 2021

Jikai Si, Zuoguang Yan, Rui Nie, Shuai Xu, Chun Gan and Wenping Cao

To improve the power density and generation efficiency of the tubular permanent magnetic linear generators (TPMLGs) under realistic sea-stator condition, a TPMLG with 120° phase…

Abstract

Purpose

To improve the power density and generation efficiency of the tubular permanent magnetic linear generators (TPMLGs) under realistic sea-stator condition, a TPMLG with 120° phase belt toroidal windings (120°-TPMLG) for wave energy conversion is proposed in this paper.

Design/methodology/approach

First, the structure of the 120°-TPMLG is introduced and its operation principle is analyzed. Second, the design process of the 120°-TPMLG is described. Meanwhile, the finite-element models of the 120°-TPMLG and the TPMLG with traditional fractional pitch windings (T-TPMLG) are established based on the similar overall dimensions. Then, the electromagnetic characteristics of the 120°-TPMLG are analyzed, such as air gap flux density, back electromotive force and load voltage. Finally, a comparative analysis of the magnetic flux density, flux linkage, load and no-load performance of the two generators are conducted.

Findings

The result shows that the 120°-TPMLG has higher power density and generation efficiency than the T-TPMLG.

Originality/value

This paper proposes a TPMLG with 120° phase belt toroidal windings (120°-TPMLG) to improve the power density and generation efficiency.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 August 2019

Liang Yu, Biao Ma, Man Chen, He Yan Li and Jikai Liu

This paper aims to study and compare the friction stability of wet paper-based clutches with regard to the radial grooves (RG) and waffle grooves (WG).

Abstract

Purpose

This paper aims to study and compare the friction stability of wet paper-based clutches with regard to the radial grooves (RG) and waffle grooves (WG).

Design/methodology/approach

This paper presents an experimental study of a wet clutch concerning the effect of groove patterns on the friction torque and surface temperature. The friction stabilities of RG and WG are investigated with the applied pressure, rotating speed and automatic transmission fluid (ATF) temperature taken into consideration.

Findings

The friction torque and surface temperature of WG are larger than those of RG under the same operating condition. The friction torque difference between RG and WG grows with the increase of applied pressure and narrows with the increase of ATF temperature. Additionally, their temperature difference expands via increasing the rotating speed and ATF temperature or reducing the applied pressure; in this way, not only the variable coefficient difference between RG and WG can be narrowed, but also the friction stability of the clutch can be improved dramatically.

Originality/value

This paper explains the thermodynamic differences between RG and WG; moreover, it is verified experimentally that WG has a better friction stability than RG.

Details

Industrial Lubrication and Tribology, vol. 72 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 November 2023

Heping Liu, Sanaullah, Angelo Vumiliya and Ani Luo

The aim of this article is to obtain a stable tensegrity structure by using the minimum knowledge of the structure.

Abstract

Purpose

The aim of this article is to obtain a stable tensegrity structure by using the minimum knowledge of the structure.

Design/methodology/approach

Three methods have been formulated based on the eigen value decomposition (EVD) and singular value decomposition theorems. These two theorems are being implemented on the matrices, which are computed from the minimal data of the structure. The required minimum data for the structure is the dimension of the structure, the connectivity matrix of the structure and the initial force density matrix computed from the type of elements. The stability of the structure is analyzed based on the rank deficiency of the force density matrix and equilibrium matrix.

Findings

The main purpose of this article is to use the defined methods to find (1) the nodal coordinates of the structure, (2) the final force density values of the structure, (3) single self-stress from multiple self-stresses and (4) the stable structure.

Originality/value

By using the defined approaches, one can understand the difference of each method, which includes, (1) the selection of eigenvalues, (2) the selection of nodal coordinates from the first decomposition theorem, (3) the selection of mechanism mode and force density values further and (4) the solution of single feasible self-stress from multiple self-stresses.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 6 of 6