Search results

1 – 2 of 2
Article
Publication date: 19 May 2020

Gerard Meunier, Quang-Anh Phan, Olivier Chadebec, Jean-Michel Guichon, Bertrand Bannwarth and Riccardo Torchio

This paper aims to study unstructured-partial element equivalent circuit (PEEC) method for modelling electromagnetic regions with surface impedance condition (SIBC) is proposed…

Abstract

Purpose

This paper aims to study unstructured-partial element equivalent circuit (PEEC) method for modelling electromagnetic regions with surface impedance condition (SIBC) is proposed. Two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. The formulation is applied in the context of low frequency problems with volumic magnetic media and coils. Non simply connected regions are treated with fundamental branch independent loop matrices coming from the circuit representation.

Design/methodology/approach

Because of the use of Whitney face elements, two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. The air is not meshed.

Findings

The new surface impedance formulation enables the modeling of volume conductive regions to efficiently simulate various devices with only a surface mesh.

Research limitations/implications

The propagation effects are not taken into account in the proposed formulation.

Originality/value

The formulation is original and is efficient for modeling non simply connected conductive regions with the use of SIBC. The unstructured PEEC SIBC formulation has been validated in presence of volume magnetic nonconductive region and compared with a SIBC FEM approach. The computational effort is considerably reduced in comparison with volume approaches.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 1 February 2022

Samuel Kvasnicka, Thomas Bauernfeind, Paul Baumgartner and Riccardo Torchio

The purpose of this paper is to show that the computation of time-periodic signals for coupled antenna-circuit problems can be substantially accelerated by means of the single…

Abstract

Purpose

The purpose of this paper is to show that the computation of time-periodic signals for coupled antenna-circuit problems can be substantially accelerated by means of the single shooting method. This allows an efficient analysis of nonlinearly loaded coupled loop antennas for near field communication (NFC) applications.

Design/methodology/approach

For the modelling of electrically small coupled field-circuit problems, the partial element equivalent circuit (PEEC) method shows to be very efficient. For analysing the circuit-like description of the coupled problem, this paper developed a generalised modified nodal analysis (MNA) and applied it to specific NFC problems.

Findings

It is shown that the periodic steady state (PSS) solution of the resulting differential-algebraic system can be computed very time efficiently by the single shooting method. A speedup of roughly 114 to conventional transient approaches can be achieved.

Practical implications

The proposed approach appears to be an efficient alternative for the computation of time PSS solutions for nonlinear circuit problems coupled with discretised conductive structures, where the homogeneous solution is not of interest.

Originality/value

The present paper explores the implementation and application of the shooting method for nonlinearly loaded coupled antenna-circuit problems based on the PEEC method and shows the efficiency of this approach.

1 – 2 of 2