Search results

1 – 3 of 3
Article
Publication date: 14 June 2013

Wai Lun Khoo, Joey Knapp, Franklin Palmer, Tony Ro and Zhigang Zhu

The purpose of this paper is to demonstrate how commercially‐off‐the‐shelf sensors and stimulators, such as infrared rangers and vibrators, can be retrofitted as a useful…

Abstract

Purpose

The purpose of this paper is to demonstrate how commercially‐off‐the‐shelf sensors and stimulators, such as infrared rangers and vibrators, can be retrofitted as a useful assistive technology in real and virtual environments.

Design/methodology/approach

The paper describes how a wearable range‐vibrotactile device is designed and tested in the real‐world setting, as well as thorough evaluations in a virtual environment for complicated navigation tasks and neuroscience studies.

Findings

In the real‐world setting, a person with normal vision who has to navigate their way around a room with their eyes closed will quickly rely on their arms and hands to explore the room. The authors’ device allows a person to “feel” their environment without touching it. Due to inherent difficulties in testing human subjects when navigating a real environment, a virtual environment affords us an opportunity to scientifically and extensively test the prototype before deploying the device in the real‐world.

Research limitations/implications

This project serves as a starting‐point for further research in benchmarking assistive technology for the visually impaired and to eventually develop a man‐machine sensorimotor model that will improve current state‐of‐the‐art technology, as well as a better understanding of neural coding in the human brain.

Social implications

Based on 2012 World Health Organization, there are 39 million blind people. This project will have a direct impact on this community.

Originality/value

The paper demonstrates a low cost design of assistive technology that has been tested and evaluated in real and virtual environments, as well as integration of sensor designs and neuroscience.

Details

Journal of Assistive Technologies, vol. 7 no. 2
Type: Research Article
ISSN: 1754-9450

Keywords

Article
Publication date: 21 March 2016

Wai Lun Khoo and Zhigang Zhu

The purpose of this paper is to provide an overview of navigational assistive technologies with various sensor modalities and alternative perception approaches for visually…

Abstract

Purpose

The purpose of this paper is to provide an overview of navigational assistive technologies with various sensor modalities and alternative perception approaches for visually impaired people. It also examines the input and output of each technology, and provides a comparison between systems.

Design/methodology/approach

The contributing authors along with their students thoroughly read and reviewed the referenced papers while under the guidance of domain experts and users evaluating each paper/technology based on a set of metrics adapted from universal and system design.

Findings

After analyzing 13 multimodal assistive technologies, the authors found that the most popular sensors are optical, infrared, and ultrasonic. Similarly, the most popular actuators are audio and haptic. Furthermore, most systems use a combination of these sensors and actuators. Some systems are niche, while others strive to be universal.

Research limitations/implications

This paper serves as a starting point for further research in benchmarking multimodal assistive technologies for the visually impaired and to eventually cultivate better assistive technologies for all.

Social implications

Based on 2012 World Health Organization, there are 39 million blind people. This paper will have an insight of what kind of assistive technologies are available to the visually impaired people, whether in market or research lab.

Originality/value

This paper provides a comparison across diverse visual assistive technologies. This is valuable to those who are developing assistive technologies and want to be aware of what is available as well their pros and cons, and the study of human-computer interfaces.

Details

Journal of Assistive Technologies, vol. 10 no. 1
Type: Research Article
ISSN: 1754-9450

Keywords

Content available
Article
Publication date: 21 March 2016

Chris Abbott

189

Abstract

Details

Journal of Assistive Technologies, vol. 10 no. 1
Type: Research Article
ISSN: 1754-9450

1 – 3 of 3