Search results

1 – 10 of 13
Article
Publication date: 15 May 2024

Yijie Zhang, Ziyi Guo, Jiangang Wei and Yijun Li

The aim of this paper is to achieve a reasonable microclimate between clothing and the human body and optimize the custom dress pattern.

Abstract

Purpose

The aim of this paper is to achieve a reasonable microclimate between clothing and the human body and optimize the custom dress pattern.

Design/methodology/approach

An interactive design method of 3D modeling, virtual try-on and heat transfer simulation are used. First, a 3D dress is designed with nonuniform rational B-splines curves and tried on virtually. After that, the heat transfer in the body-air-clothing microclimate and temperature distributions on the clothing surface are obtained. Based on the heat transfer in the body-air-clothing system, we design a method to improve the thermal comfort by optimizing the garment pattern digitally. Then, this paper utilized two heat transfer validating indexes to quantify the improvement of thermal comfort, and evaluate the modified model of dress.

Findings

The microclimate under the clothing is varied with the air gap distance, and the heat transfer on the area of the clavicle, bust point and front abandon are higher than other parts due to the narrow air gaps. In view of thermal comfort, the pattern optimization changes the distance ease and reforms the air circulating efficiency. The mean heat transfer and its standard variance are changing by about 10% and more than 20%. Thus, the heat transfer evaluation indexes are suitable to represent the heat transfer and thermal comfort in the microclimate system.

Research limitations/implications

It can be concluded that the methodology proposed in this paper has the advantage of interactive design, 3D visualization and local heat transfer simulation. This technology meets the need of personalized customization and well-considered garment and has broad application prospects.

Originality/value

This study demonstrates that modifying the distance ease on body key girths based on heat transfer is a reliable way to improve thermal comfort. This method meets the consumers’ demand of the comfort of body-fit clothing under the condition of daily activities.

Highlights

  • 3D air gap distributions.

  • Heat transfer varies with air gap distance.

  • Thermal comfort can be improved by optimizing garment pattern.

3D air gap distributions.

Heat transfer varies with air gap distance.

Thermal comfort can be improved by optimizing garment pattern.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 July 2023

Yijie Zhang, Ling Ma, Ziyi Guo, Tao Li and Fengyuan Zou

Considering only two-dimensional (2D) ease allowance cannot fully reflect the three-dimensional (3D) relationship between the position of clothing and the human body. The purpose…

Abstract

Purpose

Considering only two-dimensional (2D) ease allowance cannot fully reflect the three-dimensional (3D) relationship between the position of clothing and the human body. The purpose of this paper is to propose a method with a 3D space vector and corresponding distance ease to characterize fitting garments and then used to construct personalized clothing for similar shape body.

Design/methodology/approach

Firstly, a 3D scanner was used to obtain mannequin and fitted garment data, and 17 layers of cross-sections of the upper body were extracted. Then, 37 space vectors and corresponding space angles on each cross-section were obtained with the original point. Secondly, the detailed distance ease between the mannequin and garment was constructed due to the difference between garment vectors and body vectors. Thirdly, the distance ease mathematical models were achieved and used to calculate distance ease on a similar shape body. Additionally, the fit garment is constructed, and the garment pattern is altered by the geometric pattern alteration method.

Findings

The results show that 3D space vectors can explain the relationship between body skin and garment surface of the upper body properly. The distance ease is modeled by mathematic expressions and successfully used to make a new garment to fit a similar shape body.

Originality/value

The proposed method of constructing garments based on distance ease and 3D space vectors can create a fitted garment for a similar shape body effectively and accurately. It is useful for the personalized garment design and suitable for the manufacturing process.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 September 2022

Tao Li, Yexin Lyu, Ziyi Guo, Lei Du and Fengyuan Zou

The main purpose is to construct the mapping relationship between garment flat and pattern. Particle swarm optimization–least-squares support vector machine (PSO-LSSVM), the…

Abstract

Purpose

The main purpose is to construct the mapping relationship between garment flat and pattern. Particle swarm optimization–least-squares support vector machine (PSO-LSSVM), the data-driven model, is proposed for predicting the pattern design dimensions based on small sample sizes by digitizing the experience of the patternmakers.

Design/methodology/approach

For this purpose, the sleeve components were automatically localized and segmented from the garment flat by the Mask R-CNN. The sleeve flat measurements were extracted by the Douglas–Peucker algorithm. Then, the PSO algorithm was used to optimize the LSSVM parameters. PSO-LSSVM was trained by utilizing the experience of patternmakers.

Findings

The experimental results demonstrated that the PSO-LSSVM model can effectively improve the generation ability and prediction accuracy in pattern design dimensions, even with small sample sizes. The mean square error could reach 1.057 ± 0.06. The fluctuation range of absolute error was smaller than the others such as pure LSSVM, backpropagation and radial basis function prediction models.

Originality/value

By constructing the mapping relationship between sleeve flat and pattern, the problems of the garment flat objective recognition and pattern design dimensions accurate prediction were solved. Meanwhile, the proposed method overcomes the problem that the parameters are determined by PSO rather than empirically. This framework could be extended to other garment components.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 January 2017

Guoxin Xie, Ziyi Cui, Lina Si and Dan Guo

This paper aims to introduce a series of experimental results which are the extension of our previous novel observations (Xie et al., Soft Matter, 2011), which could be helpful…

Abstract

Purpose

This paper aims to introduce a series of experimental results which are the extension of our previous novel observations (Xie et al., Soft Matter, 2011), which could be helpful for revealing the lubrication failure mechanism in bearings when they are exposed to an electrical environment.

Design/methodology/approach

An experimental apparatus where a ball was in contact with a glass disk coated with a semi-reflective chromium layer. A small volume of oil droplet was put into the microgap of the ball-disk contact. Then, a potential was applied onto the oil micropool formed by the droplet surrounding the contact region.

Findings

It has been found that destabilization of the low-conducting oil micropool around the contact region could be induced after applying a potential. Thin oil films could be drained out of the oil pool and spread on the tribopair surfaces, resulting in the depletion of the oil pool. When the applied potential was increased, the occurrence of spreading would be easier and its development would be more obvious. In contrast, the electrospreading behavior would be suppressed when the oil viscosity, contact load and oil pool size were increased. Thermocapillary force due to thermal effect as a result of the current flow near the oil pool border has been proposed as the main driving force for the spreading behavior. The influences of the operating parameters have been ascribed to the change of the electric current near the oil pool border as well as the corresponding variations in the temperature rise and the surface tension of the oil pool.

Originality/value

This is the first study to directly observe that the lubricant oil micropool around the contact region could deplete after applying a potential, potentially resulting in oil starvation in the contact region.

Details

Industrial Lubrication and Tribology, vol. 69 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 August 2010

Ziyi Wei

Since China initiated its “go global” policy that promotes its overseas investment, China’s Outward Foreign Direct Investment (OFDI) has increased almost twenty times during the…

2557

Abstract

Since China initiated its “go global” policy that promotes its overseas investment, China’s Outward Foreign Direct Investment (OFDI) has increased almost twenty times during the last 10 years, reaching $55.9 billion in 2008. The issue of internationalization of Chinese OFDI has attracted increasing attention of researchers from a business perspective. This article systematically reviews the previous studies on overseas investments by Chinese MNEs and discusses the characteristics of Chinese internationalization behavior at both firm level and country level. The internationalization of Chinese companies cannot be understood as a simple game of “catch up” with established MNEs, and more firm‐level empirical studies should be carried out on how these characteristics influence firms’ strategic decisions.

Details

Multinational Business Review, vol. 18 no. 3
Type: Research Article
ISSN: 1525-383X

Keywords

Article
Publication date: 16 May 2016

Fayong Guo, Tao Mei, Marco Ceccarelli, Ziyi Zhao, Tao Li and Jianghai Zhao

Walking on inclined ground is an important ability for humanoid robots. In general, conventional strategies for walking on slopes lack technical analysis in, first, the waist…

Abstract

Purpose

Walking on inclined ground is an important ability for humanoid robots. In general, conventional strategies for walking on slopes lack technical analysis in, first, the waist posture with respect to actual robot and, second, the landing impact, which weakens the walking stability. The purpose of this paper is to propose a generic method for walking pattern generation considering these issues with the aim of enabling humanoid robot to walk dynamically on a slope.

Design/methodology/approach

First, a virtual ground method (VGM) is proposed to give a continuous and intuitive zero-moment point (ZMP) on slopes. Then, the dynamic motion equations are derived based on 2D and 3D models, respectively, by using VGM. Furthermore, the waist posture with respect to the actual robot is analyzed. Finally, a reformative linear inverted pendulum (LIP) named the asymmetric linear inverted pendulum (ALIP) is proposed to achieve stable and dynamical walking in any direction on a slope with lower landing impact.

Findings

Simulations and experiments are carried out using the DRC-XT humanoid robot platform with the aim of verifying the validity and feasibility of these new methods. ALIP with consideration of waist posture is practical in extending the ability of walking on slopes for humanoid robots.

Originality/value

A generic method called ALIP for humanoid robots walking on slopes is proposed. ALIP is based on LIP and several changes, including model analysis, motion equations and ZMP functions, are discussed.

Details

Industrial Robot: An International Journal, vol. 43 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 April 2024

Jun Zhao, Hao Zhang, Junwei Liu, Yanfen Gong, Songqiang Wan, Long Liu, Jiacheng Li, Ziyi Song, Shiyao Zhang and Qingrui Li

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation…

Abstract

Purpose

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation problem in tall buildings more effectively and study its mechanical properties more deeply.

Design/methodology/approach

The properties of reinforced concrete coupled shear wall (RCCSW) and reinforced ECC coupled shear wall (RECSW) have been studied by numerical simulation, which is in good agreement with the experimental results. The reliability of the finite element model is verified. On this basis, a detailed parameter study is carried out, including the strength and reinforcement ratio of longitudinal rebar, the placement height of ECC in the wall limb and the position of ECC connecting beams. The study indexes include failure mode and the skeleton curve.

Findings

The results suggest that the bearing capacity of RECSW is significantly affected by the ratio of longitudinal rebar. When the ratio of longitudinal rebar increases from 0.47% to 3.35%, the bearing capacity of RECSW increases from 250 kN to 303 kN, an increase of 21%. The strength of longitudinal rebar has little influence on the bearing capacity of RECSW. When the strength of the longitudinal rebar increases, the bearing capacity of RECSW increases little. The failure mode of RECSW can be improved by lowering the casting height of the ECC beam in a certain range.

Originality/value

In this paper, ECC is used to strengthen the coupled shear wall, and the accuracy of the finite element model is verified from the failure mode and skeleton curve. On this basis, the casting height of the ECC casting wall limb, the strength and reinforcement ratio of longitudinal rebar and the position of the ECC beam are studied in detail.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 21 March 2016

Fayong Guo, Tao Mei, Minzhou Luo, Marco Ceccarelli, Ziyi Zhao, Tao Li and Jianghai Zhao

Humanoid robots should have the ability of walking in complex environment and overcoming large obstacles in rescue mission. Previous research mainly discusses the problem of…

Abstract

Purpose

Humanoid robots should have the ability of walking in complex environment and overcoming large obstacles in rescue mission. Previous research mainly discusses the problem of humanoid robots stepping over or on/off one obstacle statically or dynamically. As an extreme case, this paper aims to demonstrate how the robots can step over two large obstacles continuously.

Design/methodology/approach

The robot model uses linear inverted pendulum (LIP) model. The motion planning procedure includes feasibility analysis with constraints, footprints planning, legs trajectory planning with collision-free constraint, foot trajectory adapter and upper body motion planning.

Findings

The motion planning with the motion constraints is a key problem, which can be considered as global optimization issue with collision-free constraint, kinematic limits and balance constraint. With the given obstacles, the robot first needs to determine whether it can achieve stepping over, if feasible, and then the robot gets the motion trajectory for the legs, waist and upper body using consecutive obstacles stepping over planning algorithm which is presented in this paper.

Originality/value

The consecutive stepping over problem is proposed in this paper. First, the paper defines two consecutive stepping over conditions, sparse stepping over (SSO) and tight stepping over (TSO). Then, a novel feasibility analysis method with condition (SSO/TSO) decision criterion is proposed for consecutive obstacles stepping over. The feasibility analysis method’s output is walking parameters with obstacles’ information. Furthermore, a modified legs trajectory planning method with center of mass trajectory compensation using upper body motion is proposed. Finally, simulations and experiments for SSO and TSO are carried out by using the XT-I humanoid robot platform with the aim to verify the validity and feasibility of the novel methods proposed in this paper.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 January 2024

Ziyi Liu, Ling Yuan, Chengcheng Cao, Ye Yang and Fanchao Zhuo

The effect of playfulness climate on employees in firms has been the subject of an increasing number of studies in recent years. Given the growing number of businesses that have…

Abstract

Purpose

The effect of playfulness climate on employees in firms has been the subject of an increasing number of studies in recent years. Given the growing number of businesses that have incorporated playfulness into their operations, it is possible to enhance the task performance and innovative performance of the younger generation of workers by rationally managing playfulness, particularly when it comes to that aspect of the workplace. Based on the conservation of resources theory, this study aims to investigate how the playfulness climate in organizations influences the change self-efficacy of the millennial workers and how to enhance their task performance and innovation performance.

Design/methodology/approach

The authors used a quantitative approach to test the relationship between the hypotheses. The survey population for this study consisted of the millennial workers in the computer sector who are involved in research and development in China. Hierarchical regression analysis was used to test the built mediation model empirically over the course of the study's three rounds of data collection, each separated by one month. Through the collection of paired questions for leadership and their subordinates, 424 valid questionnaires were obtained.

Findings

The examination of the questionnaire results supports the study's theoretical hypothesis, which states that when millennial workers sense a more playfulness work environment, it will encourage them to develop a sense of change self-efficacy. Additionally, they will be better able to handle work-related responsibilities and come up with innovative ideas as a result of change self-efficacy, which would eventually enhance the task performance and innovation performance of millennial employees.

Originality/value

By introducing the mediation of change self-efficacy, this study expands on the application of the conservation of resources theory. The research on the performance of millennial employees is complemented and enhanced by investigating the relationship between the playfulness climate and employees' task performance and innovation performance from the perspective of their sense of change self-efficacy. This study also reveals that managers should foster a positive and playfulness environment in their workplaces in order to manage the performance of millennial employees.

Details

Journal of Organizational Change Management, vol. 37 no. 3
Type: Research Article
ISSN: 0953-4814

Keywords

Article
Publication date: 14 February 2024

Qian Zhou, Shuxiang Wang, Xiaohong Ma and Wei Xu

Driven by the dual-carbon target and the widespread digital transformation, leveraging digital technology (DT) to facilitate sustainable, green and high-quality development in…

Abstract

Purpose

Driven by the dual-carbon target and the widespread digital transformation, leveraging digital technology (DT) to facilitate sustainable, green and high-quality development in heavy-polluting industries has emerged as a pivotal and timely research focus. However, existing studies diverge in their perspectives on whether DT’s impact on green innovation is synergistic or leads to a crowding-out effect. In pursuit of optimizing the synergy between DT and green innovation, this paper aims to investigate the mechanisms that can be harnessed to render DT a more constructive force in advancing green innovation.

Design/methodology/approach

Drawing from the theoretical framework of resource orchestration, the authors offer a comprehensive elucidation of how DT intricately influences the green innovation efficiency of enterprises. Given the intricate interplay within the synergistic relationship between DT and green innovation, the authors use the fuzzy-set qualitative comparative analysis method to explore diverse configurations of antecedent conditions leading to optimal solutions. This approach transcends conventional linear thinking to provide a more nuanced understanding of the complex dynamics involved.

Findings

The findings reveal that antecedent configurations fostering high green innovation efficiency actually differ across various stages. First, there are three distinct configuration patterns that can enhance the green technology research and development (R&D) efficiency of enterprises, namely, digitally driven resource integration (RI), digitally driven resource synergy (RSy) and high resource orchestration capability. Then, the authors also identify three configuration patterns that can bolster the high green achievement transfer efficiency of enterprises, including a digitally optimized resource portfolio, digitally driven RSy and efficient RI. The findings not only contribute to advancing the resource orchestration theory in the digital ecosystem but also provide empirical evidence and practical insights to support the sustainable development of green innovation.

Practical implications

The findings can offer valuable insights for enterprise managers, providing decision-making guidance on effectively harnessing the innovation-driven value of internal and external resources through resource restructuring, bundling and leveraging, whether with or without the support of DT.

Social implications

The research findings contribute to heavy-polluting enterprises addressing the paradoxical tensions between digital transformation and resource constraints under environmental regulatory pressures. It aims to facilitate the simultaneous achievement of environmental and commercial success by enhancing their green innovation capabilities, ultimately leading to sustainability across profit and the environment.

Originality/value

Compared with previous literature, this research introduces a distinctive theoretical perspective, the resource orchestration view, to shed light on the paradoxical relationship on resource-occupancy between DT application and green innovation. It unveils the “black box” of how digitalization impacts green innovation efficiency from a more dynamic resource-based perspective. While most studies regard green innovation activities as a whole, this study delves into the impact of digitalization on green innovation within the distinct realms of green technology R&D and green achievement transfer, taking into account a two-stage value chain perspective. Finally, in contrast to previous literature that predominantly analyzes influence mechanisms through linear impact, the authors use configuration analysis to intricately unravel the complex influences arising from various combinatorial relationships of digitalization and resource orchestration behaviors on green innovation efficiency.

Details

Sustainability Accounting, Management and Policy Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8021

Keywords

1 – 10 of 13