Search results

1 – 10 of 467
Article
Publication date: 13 February 2020

Ho Pham Huy Anh and Cao Van Kien

The purpose of this paper is to propose an optimal energy management (OEM) method using intelligent optimization techniques applied to implement an optimally hybrid heat and power…

Abstract

Purpose

The purpose of this paper is to propose an optimal energy management (OEM) method using intelligent optimization techniques applied to implement an optimally hybrid heat and power isolated microgrid. The microgrid investigated combines renewable and conventional power generation.

Design/methodology/approach

Five bio-inspired optimization methods include an advanced proposed multi-objective particle swarm optimization (MOPSO) approach which is comparatively applied for OEM of the implemented microgrid with other bio-inspired optimization approaches via their comparative simulation results.

Findings

Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization methods. Moreover, the proposed MOPSO is successfully applied to perform 24-h OEM microgrid. The simulation results also display the merits of the real time optimization along with the arbitrary of users’ selection as to satisfy their power requirement.

Originality/value

This paper focuses on the OEM of a designed microgrid using a newly proposed modified MOPSO algorithm. Optimal multi-objective solutions through Pareto front demonstrate that the advanced proposed MOPSO method performs quite better in comparison with other meta-heuristic optimization approaches.

Article
Publication date: 6 June 2008

Christie Alisa Maddock and Massimiliano Vasile

The purpose of this paper is to present a methodology and experimental results on using global optimization algorithms to determine the optimal orbit, based on the mission…

Abstract

Purpose

The purpose of this paper is to present a methodology and experimental results on using global optimization algorithms to determine the optimal orbit, based on the mission requirements, for a set of spacecraft flying in formation with an asteroid.

Design/methodology/approach

A behavioral‐based hybrid global optimization approach is used to first characterize the solution space and find families of orbits that are a fixed distance away from the asteroid. The same optimization approach is then used to find the set of Pareto optimal solutions that minimize both the distance from the asteroid and the variation of the Sun‐spacecraft‐asteroid angle. Two sample missions to asteroids, representing constrained single and multi‐objective problems, were selected to test the applicability of using an in‐house hybrid stochastic‐deterministic global optimization algorithm (Evolutionary Programming and Interval Computation (EPIC)) to find optimal orbits for a spacecraft flying in formation with an orbit. The Near Earth Asteroid 99942 Apophis (2004 MN4) is used as the case study due to a fly‐by of Earth in 2029 leading to two potential impacts in 2036 or 2037. Two black‐box optimization problems that model the orbital dynamics of the spacecraft were developed.

Findings

It was found for the two missions under test, that the optimized orbits fall into various distinct families, which can be used to design multi‐spacecraft missions with similar orbital characteristics.

Research limitations/implications

The global optimization software, EPIC, was very effective at finding sets of orbits which met the required mission objectives and constraints for a formation of spacecraft in proximity of an asteroid. The hybridization of the stochastic search with the deterministic domain decomposition can greatly improve the intrinsic stochastic nature of the multi‐agent search process without the excessive computational cost of a full grid search. The stability of the discovered families of formation orbit is subject to the gravity perturbation of the asteroid and to the solar pressure. Their control, therefore, requires further investigation.

Originality/value

This paper contributes to both the field of space mission design for close‐proximity orbits and to the field of global optimization. In particular, suggests a common formulation for single and multi‐objective problems and a robust and effective hybrid search method based on behaviorism. This approach provides an effective way to identify families of optimal formation orbits.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 30 September 2014

Kun Cai, Zhen Luo and Qing H. Qin

The purpose of this paper is to develop a heuristic method for topology optimization of a continuum with bi-modulus material which is frequently occurred in practical engineering…

Abstract

Purpose

The purpose of this paper is to develop a heuristic method for topology optimization of a continuum with bi-modulus material which is frequently occurred in practical engineering.

Design/methodology/approach

The essentials of this model are as follows: First, the original bi-modulus is replaced with two isotropic materials to simplify structural analysis. Second, the stress filed is adopted to calculate the effective strain energy densities (SED) of elements. Third, a floating reference interval of SED is defined and updated by active constraint. Fourth, the elastic modulus of an element is updated according to its principal stresses. Final, the design variables are updated by comparing the local effective SEDs and the current reference interval of SED.

Findings

Numerical examples show that the ratio between the tension modulus and the compression modulus of the bi-modulus material in a structure has a significant effect on the final topology design, which is different from that in the same structure with isotropic material. In the optimal structure, it can be found that the material points with the higher modulus are reserved as much as possible. When the ratio is far more than unity, the material can be considered as tension-only material. If the ratio is far less than unity, the material can be considered as compression-only material. As a result, the topology optimization of continuum structures with tension-only or compression-only materials can also be solved by the proposed method.

Originality/value

The value of this paper is twofold: the bi-modulus material layout optimization in a continuum can be solved by the method proposed in this paper, and the layout difference between the structure with bi-modulus material and the same structure but with isotropic material shows that traditional topology optimization result could not be suitable for a real bi-modulus layout design project.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 February 2022

Altug Piskin, Tolga Baklacioglu and Onder Turan

The purpose of the paper is to present component matching and off-design calculations using generic components maps.

Abstract

Purpose

The purpose of the paper is to present component matching and off-design calculations using generic components maps.

Design/methodology/approach

Multi objective hybrid optimization code is integrated with turbojet function code. Both codes are developed for the research study. Initially, methodology is applied on a numerical propulsion system simulation (NPSS) example engine cycle calculations. Effect of matching constants are shown. Later, component matching and application is done on JetCat engine. Calculations are compared with measured test data. And additional operating conditions are calculated using the matched component constants.

Findings

Obtained matching constants provided very good results with NPSS example and also JetCat test measurements. Optimization algorithm is practical for turbojet engine component matching and off-design calculations. Off-design matching provides information about the turbine and exhaust areas of an unknown turbine engine. Thus it is possible to perform off design calculations at various operating conditions. Finding detailed turbine maps is difficult than finding compressor maps. In that case characteristic turbine curve may be a good alternative.

Research limitations/implications

Selected component maps and the target engine components should be similar characteristics. For a one/two stage turbine, characteristic curves can be applied. Validation should be extended on different type of compressor and turbines.

Practical implications

Operators and researchers usually need more information about the available turbojet engines for increasing the effective usage. Generally, manufacturers do not provide such detailed information to public. This study introduces an alternative methodology for engine modeling by using generic component maps and thus obtaining information for off-design calculations. User is flexible for selecting/scaling the compressor and turbine maps.

Originality/value

A hybrid optimization code is used as a new approach. It can be used with other engine functions; for instance functions corresponding to turboshaft or turbofan engines, by modifying the engine function. Number of input parameters and objective functions can be modified accordingly.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 April 2024

Vaishali Rajput, Preeti Mulay and Chandrashekhar Madhavrao Mahajan

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired

Abstract

Purpose

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired algorithms to address complex optimization problems efficiently. These algorithms strike a balance between computational efficiency and solution optimality, attracting significant attention across domains.

Design/methodology/approach

Bio-inspired optimization techniques for feature engineering and its applications are systematically reviewed with chief objective of assessing statistical influence and significance of “Bio-inspired optimization”-based computational models by referring to vast research literature published between year 2015 and 2022.

Findings

The Scopus and Web of Science databases were explored for review with focus on parameters such as country-wise publications, keyword occurrences and citations per year. Springer and IEEE emerge as the most creative publishers, with indicative prominent and superior journals, namely, PLoS ONE, Neural Computing and Applications, Lecture Notes in Computer Science and IEEE Transactions. The “National Natural Science Foundation” of China and the “Ministry of Electronics and Information Technology” of India lead in funding projects in this area. China, India and Germany stand out as leaders in publications related to bio-inspired algorithms for feature engineering research.

Originality/value

The review findings integrate various bio-inspired algorithm selection techniques over a diverse spectrum of optimization techniques. Anti colony optimization contributes to decentralized and cooperative search strategies, bee colony optimization (BCO) improves collaborative decision-making, particle swarm optimization leads to exploration-exploitation balance and bio-inspired algorithms offer a range of nature-inspired heuristics.

Article
Publication date: 2 March 2012

V.P. Sakthivel and S. Subramanian

The aim of this research paper is to examine the bio‐inspired optimization algorithms, namely, genetic algorithm (GA), particle swarm optimization (PSO) and bacterial foraging…

Abstract

Purpose

The aim of this research paper is to examine the bio‐inspired optimization algorithms, namely, genetic algorithm (GA), particle swarm optimization (PSO) and bacterial foraging optimization (BFO) algorithm with adaptive chemotactic step for determining the steady‐state equivalent circuit parameters of the three‐phase induction motor using a set of manufacturer data.

Design/methodology/approach

The induction motor parameter determination issue is devised as a nonlinear constrained optimization problem. The nonlinear equations of various quantities (torque, current and power factor) are derived in terms of equivalent circuit parameters from a single and a double‐cage model, and then, equates to the corresponding manufacturer data. These equations are solved by the bio‐inspired algorithms. Using the squared error between the determined and the manufacturer data as the objective function, the parameter determination problem is transferred into an optimization process where the model parameters are determined that minimize the defined objective function. The objective function is iteratively minimized using GA, PSO and BFO techniques. In order to balance the exploration and exploitation searches of the BFO algorithm, an adaptive chemotactic step is utilized.

Findings

Comparisons of the results of GA, PSO, BFO and IEEE Std. 112‐F (using no‐load, locked‐rotor and stator resistance tests) methods for two sample motors are presented. Results show the superiority of the bio‐inspired optimization algorithms over the classical one. Besides, BFO‐based parameter determination method is observed to obtain better quality solutions quickly than GA and PSO methods.

Practical implications

The parameters obtained by the proposed approaches can be used in analyzing the stalling and/or reacceleration process of a loaded motor following a fault or during voltage sag condition as well as in system‐level studies.

Originality/value

The most significant contribution of the research is the potential to determine the equivalent circuit parameters of induction motor only from its manufacturer data without conducting any lab tests on the motor. The bio‐inspired optimization based parameter determination approaches are faster and less intrusive than the IEEE Std. 112‐F method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 March 2014

Ahmad Mozaffari, Alireza Fathi and Saeed Behzadipour

The purpose of this paper is to apply a hybrid neuro-fuzzy paradigm called self-organizing neuro-fuzzy multilayered classifier (SONeFMUC) to classify the operating faults of a…

Abstract

Purpose

The purpose of this paper is to apply a hybrid neuro-fuzzy paradigm called self-organizing neuro-fuzzy multilayered classifier (SONeFMUC) to classify the operating faults of a hydraulic system. The main motivation behind the use of SONeFMUC is to attest the capabilities of neuro-fuzzy classifier for handling the difficulties associated with fault diagnosis of hydraulic circuits.

Design/methodology/approach

In the proposed methodology, first, the neuro-fuzzy nodes at each layer of the SONeFMUC are trained separately using two well-known bio-inspired algorithms, i.e. a semi deterministic method with random walks called co-variance matrix adaptation evolutionary strategy (CMA-ES) and a swarm-based explorer with adaptive fuzzified parameters (SBEAFP). Thereafter, a revised version of the group method data handling (GMDH) policy that uses the Darwinian concepts such as truncation selection and elitism is engaged to connect the nodes of different layers in an effective manner.

Findings

Based on comparative numerical experiments, the authors conclude that integration of neuro-fuzzy method and bio-inspired supervisor results in a really powerful classification tool beneficial for uncertain environments. It is proved that the method outperforms some well-known classifiers such as support vector machine (SVM) and particle swarm optimization-based SVM (PSO-SVM). Besides, it is indicated that an efficient bio-inspired method can effectively adjust the constructive parameters of the multi-layered neuro-fuzzy classifier. For the case, it is observed that designing a fuzzy controller for PSO predisposes it to effectively balance the exploration/exploitation capabilities, and consequently optimize the structure of SONeFMUC.

Originality/value

The originality of the paper can be considered from both numerical and practical points of view. The signals obtained through the data acquisition possess six different features in order for the hydraulic system to undergo four types of faults, i.e. cylinder fault, pump fault, valve leakage fault and rupture of the piping system. Besides, to elaborate on the authenticity and efficacy of the proposed method, its performance is compared with well-known rival techniques.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 8 May 2024

Minghao Wang, Ming Cong, Yu Du, Huageng Zhong and Dong Liu

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no…

Abstract

Purpose

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no longer satisfied with enabling robots to build maps by remote control, more needs will focus on the autonomous exploration of unknown areas, which refer to the low light, complex spatial features and a series of unstructured environment, lick underground special space (dark and multiintersection). This study aims to propose a novel robot structure with mapping and autonomous exploration algorithms. The experiment proves the detection ability of the robot.

Design/methodology/approach

A small bio-inspired mobile robot suitable for underground special space (dark and multiintersection) is designed, and the control system is set up based on STM32 and Jetson Nano. The robot is equipped with double laser sensor and Ackerman chassis structure, which can adapt to the practical requirements of exploration in underground special space. Based on the graph optimization SLAM method, an optimization method for map construction is proposed. The Iterative Closest Point (ICP) algorithm is used to match two frames of laser to recalculate the relative pose of the robot, which improves the sensor utilization rate of the robot in underground space and also increase the synchronous positioning accuracy. Moreover, based on boundary cells and rapidly-exploring random tree (RRT) algorithm, a new Bio-RRT method for robot autonomous exploration is proposed in addition.

Findings

According to the experimental results, it can be seen that the upgraded SLAM method proposed in this paper achieves better results in map construction. At the same time, the algorithm presents good real-time performance as well as high accuracy and strong maintainability, particularly it can update the map continuously with the passing of time and ensure the positioning accuracy in the process of map updating. The Bio-RRT method fused with the firing excitation mechanism of boundary cells has a more purposeful random tree growth. The number of random tree expansion nodes is less, and the amount of information to be processed is reduced, which leads to the path planning time shorter and the efficiency higher. In addition, the target bias makes the random tree grow directly toward the target point with a certain probability, and the obtained path nodes are basically distributed on or on both sides of the line between the initial point and the target point, which makes the path length shorter and reduces the moving cost of the mobile robot. The final experimental results demonstrate that the proposed upgraded SLAM and Bio-RRT methods can better complete the underground special space exploration task.

Originality/value

Based on the background of robot autonomous exploration in underground special space, a new bio-inspired mobile robot structure with mapping and autonomous exploration algorithm is proposed in this paper. The robot structure is constructed, and the perceptual unit, control unit, driving unit and communication unit are described in detail. The robot can satisfy the practical requirements of exploring the underground dark and multiintersection space. Then, the upgraded graph optimization laser SLAM algorithm and interframe matching optimization method are proposed in this paper. The Bio-RRT independent exploration method is finally proposed, which takes shorter time in equally open space and the search strategy for multiintersection space is more efficient. The experimental results demonstrate that the proposed upgrade SLAM and Bio-RRT methods can better complete the underground space exploration task.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 17 August 2012

Cem Şafak Şahin and M. Ümit Uyar

This paper aims to present an approach for a bio‐inspired decentralization topology control mechanism, called force‐based genetic algorithm (FGA), where a genetic algorithm (GA…

Abstract

Purpose

This paper aims to present an approach for a bio‐inspired decentralization topology control mechanism, called force‐based genetic algorithm (FGA), where a genetic algorithm (GA) is run by each holonomic autonomous vehicle (HAV) in a mobile ad hoc network (MANET) as software agent to achieve a uniform spread of HAVs and to provide a fully connected network over an unknown geographical terrain. An HAV runs its own FGA to decide its next movement direction and speed based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge.

Design/methodology/approach

The objective function used in FGA is inspired by the equilibrium of the molecules in physics where each molecule tries to be in the balanced position to spend minimum energy to maintain its position. In this approach, a virtual force is assumed to be applied by the neighboring HAVs to a given HAV. At equilibrium, the aggregate virtual force applied to an HAV by its neighbors should sum up to zero. If the aggregate virtual force is not zero, it is used as a fitness value for the HAV. The value of this virtual force depends on the number of neighbors within the communication range of Rcom and the distance among them. Each chromosome in our GA‐based framework is composed of speed and movement direction. The FGA is independently run by each HAV as a topology control mechanism and only utilizes information from neighbors and local terrain to make movement and speed decisions to converge towards a uniform distribution of HAVs. The authors developed an analytical model, simulation software and several testbeds to study the convergence properties of the FGA.

Findings

The paper finds that coverage‐centric, bio‐inspired, mobile node deployment algorithm ensures effective sensing coverage for each mobile node after initial deployment. The FGA is also an energy‐aware self‐organization framework since it reduces energy consumption by eliminating unnecessary excessive movements. Fault‐tolerance is another important feature of the GA‐based approach since the FGA is resilient to losses and malfunctions of HAVs. Furthermore, the analytical results show that the authors' bio‐inspired approach is effective in terms of convergence speed and area coverage uniformity. As seen from the experimental results, the FGA delivers promising results for uniform autonomous mobile node distribution over an unknown geographical terrain.

Originality/value

The proposed decentralized and bio‐inspired approach for autonomous mobile nodes can be used as a real‐time topology control mechanism for commercial and military applications since it adapts to local environment rapidly but does not require global network knowledge.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 5 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 2 May 2017

Qiang Xue and Duan Haibin

The purpose of this paper is to propose a new approach for aerodynamic parameter identification of hypersonic vehicles, which is based on Pigeon-inspired optimization (PIO…

Abstract

Purpose

The purpose of this paper is to propose a new approach for aerodynamic parameter identification of hypersonic vehicles, which is based on Pigeon-inspired optimization (PIO) algorithm, with the objective of overcoming the disadvantages of traditional methods based on gradient such as New Raphson method, especially in noisy environment.

Design/methodology/approach

The model of hypersonic vehicles and PIO algorithm is established for aerodynamic parameter identification. Using the idea, identification problem will be converted into the optimization problem.

Findings

A new swarm optimization method, PIO algorithm is applied in this identification process. Experimental results demonstrated the robustness and effectiveness of the proposed method: it can guarantee accurate identification results in noisy environment without fussy calculation of sensitivity.

Practical implications

The new method developed in this paper can be easily applied to solve complex optimization problems when some traditional method is failed, and can afford the accurate hypersonic parameter for control rate design of hypersonic vehicles.

Originality/value

In this paper, the authors converted this identification problem into the optimization problem using the new swarm optimization method – PIO. This new approach is proved to be reasonable through simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 467