Search results

1 – 10 of over 1000
Article
Publication date: 24 August 2010

Pablo Gonzalez de Santos, E. Garcia, Javier Sarria, Roberto Ponticelli and Jesus Reviejo

The purpose of this paper is to introduce a new manipulator structure to configure power‐assist devices in order to protect the operator from suffering musculoskeletal disorders…

Abstract

Purpose

The purpose of this paper is to introduce a new manipulator structure to configure power‐assist devices in order to protect the operator from suffering musculoskeletal disorders. The mechanical structure and the control system along with their main features are presented.

Design/methodology/approach

The new structure was designed under the criterion of minimizing the torques required for handling payloads up to 75 kg as well as to configure a system to be controlled easily.

Findings

A new structure based on electrical AC motors and capable of handling high payloads exerting low motor torque is provided.

Originality/value

The paper describes how application of the criterion of minimizing the required torques to handle heavy payload produced a new manipulator structure. This structure is patent protected.

Details

Industrial Robot: An International Journal, vol. 37 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Expert briefing
Publication date: 14 February 2018

SpaceX and the private sector space business.

Details

DOI: 10.1108/OXAN-DB229765

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 1 October 2004

Brian Yamauchi and Pavlo Rudakevych

To demonstrate proof‐of‐concept of the Griffon man‐portable hybrid unmanned ground vehicle/unmanned aerial vehicle (UGV/UAV) based on the iRobot PackBot we developed the Griffon…

1094

Abstract

To demonstrate proof‐of‐concept of the Griffon man‐portable hybrid unmanned ground vehicle/unmanned aerial vehicle (UGV/UAV) based on the iRobot PackBot we developed the Griffon air mobility system consisting of a gasoline‐powered propeller engine, a steerable parafoil, and a radio‐controlled servo system. We integrated the AMS with a PackBot prototype, and we conducted ground and flight tests to validate this concept. The Griffon prototype was capable of remote‐controlled flight, take‐off, and landing. The Griffon achieved speeds of over 20 mph and altitudes of up to 200 feet. We demonstrated the feasibility of developing a man‐portable hybrid UGV/UAV. Future work may explore the possibilities for teleoperated, semi‐autonomous, and fully autonomous control using the Griffon concept. The parafoil wing limits the usability of this vehicle in windy conditions, but this could be addressed using a lightweight fixed wing instead. Man‐portable hybrid UGV/UAVs may be used by the military to perform reconnaissance and strike missions in urban environments, and by civilian teams to conduct search‐and‐rescue operations in hazardous terrain. This research provides the first demonstration of a man‐portable unmanned vehicle capable of both flight and ground locomotion, and it does so using a combat‐tested UGV platform.

Details

Industrial Robot: An International Journal, vol. 31 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 April 2020

Sajal Kissoon, Francesco Saverio Mastropierro, Devaiah K. Nalianda, Andrew Rolt and Bobby Sethi

The growth in air mobility, rising fuel prices and ambitious targets in emission reduction are some of the driving factors behind research towards more efficient aircraft. The…

Abstract

Purpose

The growth in air mobility, rising fuel prices and ambitious targets in emission reduction are some of the driving factors behind research towards more efficient aircraft. The purpose of this paper is to assess the application of a blended wing body (BWB) aircraft configuration with turbo-electric distributed propulsion in the military sector and to highlight the potential benefits that could be achieved for long-range and heavy payload applications.

Design/methodology/approach

Mission performance has been simulated using a point-mass approach and an engine performance code (TURBOMATCH) for the propulsion system. Payload-range charts were created to compare the performance of a BWB aircraft with various different fuels against the existing Boeing 777-200LR as a baseline.

Findings

When using kerosene, an increase in payload of 42 per cent was achieved but the use of liquefied natural gas enabled a 50 per cent payload increase over a design range of 7,500 NM. When liquid hydrogen (LH2) is used, the range may be limited to about 3,000 NM by the volume available for this low-density fuel, but the payload at this range could be increased by 137 per cent to 127,000 kg.

Originality/value

The results presented to estimate the extent to which the efficiency of military operations could be improved by making fewer trips to transport high-density and irregular cargo items and indicate how well the proposed alternatives would compare with present military aircraft. There are no existing NATO aircraft with such extended payload and range capacities. This paper, therefore, explores the potential of BWB aircraft with turbo-electric distributed propulsion as effective military transports.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 June 2022

Changlong Ye, Yunfei Du, Suyang Yu, Qiang Zhao and Chunying Jiang

With the development of automation technology, the accuracy, bearing capacity and self-adaptation requirements of wheeled mobile robots are more and more demanding under various…

Abstract

Purpose

With the development of automation technology, the accuracy, bearing capacity and self-adaptation requirements of wheeled mobile robots are more and more demanding under various complex conditions, which will urge designers such shortcomings as the low accuracy, poor flexibility and weak obstacle crossing ability of traditional heavy haul vehicles and improve the wear resistance and bearing capacity of traditional omnidirectional wheels.

Design/methodology/approach

The optimal configuration for heavy payload transportation is obtained by building sliding friction consumption model of traditional wheels with different driving types based on Hertz tangential contact theory. The heavy payload omnidirectional wheel with a double-wheel steering and a coupled differential wheel driving is designed with the optimal configuration. The wheel consists of a differential gear train unit and a nonindependent suspension unit. Kinematics model of the wheel is established and relative parameters are optimized.

Findings

The prototype experiments show that the wheel has higher motion accuracy and environment adaptability. The results are consistent with the theoretical calculation, which show that the accuracy is more than 50% higher than that of differential prototype. The motion stability and the accuracy of the coupled differential omnidirectional wheel are better than those of the traditional omnidirectional wheels during the moving and obstacle crossing process under complex conditions, which verifies the correctness and advantages of the design.

Originality/value

Aiming at the specific application of heavy payload omnidirectional transportation, a new omnidirectional mobile mechanism with a two-wheel coupling drive structure and an adaptive mechanism is proposed. The simulation and experimental results show that it can realize the high-precision heavy-load omnidirectional movement, the effective contact with the ground and improve the adaptability to the rugged ground. It is flexible, simple and modular and can be widely applied to transportation, exploration, detection and other related industrial fields.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 April 2012

Chu Xiaobing, Gao Feng and Ge Hao

The purpose of this paper is to present the direct kinematic analysis of a heavypayload forging manipulator. In the grasping stage, the manipulator is equivalent to a 3‐DOF…

Abstract

Purpose

The purpose of this paper is to present the direct kinematic analysis of a heavypayload forging manipulator. In the grasping stage, the manipulator is equivalent to a 3‐DOF under‐actuated mechanism. In order to deal with the direct position kinematics of the under‐actuated mechanism, the analysis is performed in two steps.

Design/methodology/approach

The paper analyzes the direct position kinematics of the 3‐DOF under‐actuated mechanism as follows: first, the authors add a virtual constraint on the mechanism, convert it to a 2‐DOF fully actuated mechanism and calculate the direct kinematics of the constrained mechanism. Then, the constraint is applied to many different positions and the corresponding direct kinematics of the constrained mechanism are calculated, respectively. Finally, the mechanism with lower gravitational potential energy than any other constrained mechanism is chosen, and its direct position is what is needed for the 3‐DOF underactuated mechanism.

Findings

The paper provides a solution for the direct kinematic analysis of a heavypayload forging manipulator in the grasping stage. Furthermore, the simulation and experiment results confirm the effectiveness of the solution.

Originality/value

The paper proposes a methodology to deal with the direct position kinematics of the 3‐DOF under‐actuated mechanism in two steps.

Details

Industrial Robot: An International Journal, vol. 39 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 January 2010

Daren Yu and Xiaowu Lv

In recent years, high‐altitude/long‐endurance airship platforms have generated great interest as a means to provide communications and surveillance capabilities. The purpose of…

1117

Abstract

Purpose

In recent years, high‐altitude/long‐endurance airship platforms have generated great interest as a means to provide communications and surveillance capabilities. The purpose of this paper is to develop a model for airship conceptual design and help provide insight into the viability of high‐altitude/long‐endurance airships.

Design/methodology/approach

A configuration analysis model with the consideration of pressure difference, temperature difference, and helium purity, etc. was developed. The influences of the airship payload, size and area required of solar cell with environment and operation parameters, such as operation latitude, pressure difference, temperature difference, helium purity, seasons, latitude, and wind speed, etc. were analyzed.

Findings

The results show that the area of solar cell required for stratospheric airship is very large under the condition of low altitude, high latitude, wind, and in winter, etc. which might make the design of high‐altitude/long‐endurance airship an elusive goal. They also show that the solar cell efficiency is the key technology in the control of solar cell area required for airships, and the technology advances in regenerative fuel cells and propeller efficiency have significant effects among on the airship payload, size, and solar cell area required for airship.

Originality/value

The paper analyses the energy balance of the high‐altitude/long‐endurance airship.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 November 2018

Hongshi Lu, Li Aijun, Wang Changqing and Zabolotnov Michaelovitch Yuriy

This paper aims to present the impact analysis of payload rendezvous with tethered satellite system and the design of an adaptive sliding mode controller which can deal with mass…

Abstract

Purpose

This paper aims to present the impact analysis of payload rendezvous with tethered satellite system and the design of an adaptive sliding mode controller which can deal with mass parameter uncertainty of targeted payload, so that the proposed cislunar transportation scheme with spinning tether system could be extended to a wider and more practical range.

Design/methodology/approach

In this work, dynamical model is first derived based on Langrangian equations to describe the motion of a spinning tether system in an arbitrary Keplerian orbit, which takes the mass of spacecraft, tether and payload into account. Orbital design and optimal open-loop control for the payload tossed by the spinning tether system are then presented. The real payload rendezvous impact around docking point is also analyzed. Based on reference acceleration trajectory given by optimal theories, a sliding mode controller with saturation functions is designed in the close-loop control of payload tossing stage under initial disturbance caused by actual rendezvous error. To alleviate the influence of inaccurate/unknown payload mass parameters, the adaptive law is designed and integrated into sliding mode controller. Finally, the performance of the proposed controller is evaluated using simulations. Simulation results validate that proposed controller is found effective in driving the spinning tether system to carry payload into desired cislunar transfer orbit and in dealing with payload mass parameter uncertainty in a relatively large range.

Findings

The results show that unideal rendezvous manoeuvres have significant impact on in-plane motion of spinning tether system, and the proposed adaptive sliding mode controller with saturation functions not only guarantees the stability but also provides good performance and robustness against the parameter and unstructured uncertainties.

Originality/value

This work addresses the analysis of actual impact on spinning tether system motion when payload is docking with system within tolerated docking window, rather than at the particular ideal docking point, and the robust tracking control of deep-space payload tossing missions with the spinning tether system using the adaptive sliding mode controller dealing with parameter uncertainties. This combination has not been proposed before for tracking control of multivariable spinning tether systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
41

Abstract

Details

Industrial Robot: An International Journal, vol. 31 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 15 May 2009

85

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 3
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 1000