Search results

1 – 3 of 3
Article
Publication date: 9 April 2024

Charles A. Donnelly, Sushobhan Sen, John W. DeSantis and Julie M. Vandenbossche

The time-varying equivalent linear temperature gradient (ELTG) significantly affects the development of faulting and must therefore be accounted for in pavement design. The same…

26

Abstract

Purpose

The time-varying equivalent linear temperature gradient (ELTG) significantly affects the development of faulting and must therefore be accounted for in pavement design. The same is true for faulting of bonded concrete overlays of asphalt (BCOA) with slabs larger than 3 x 3 m. However, the evaluation of ELTG in Mechanistic-Empirical (ME) BCOA design is highly time-consuming. The use of an effective ELTG (EELTG) is an efficient alternative to calculating ELTG. In this study, a model to quickly evaluate EELTG was developed for faulting in BCOA for panels 3 m or longer in size, whose faulting is sensitive to ELTG.

Design/methodology/approach

A database of EELTG responses was generated for 144 BCOAs at 169 locations throughout the continental United States, which was used to develop a series of prediction models. Three methods were evaluated: multiple linear regression (MLR), artificial neural networks (ANNs), and multi-gene genetic programming (MGGP). The performance of each method was compared, considering both accuracy and model complexity.

Findings

It was shown that ANNs display the highest accuracy, with an R2 of 0.90 on the validation dataset. MLR and MGGP models achieved R2 of 0.73 and 0.71, respectively. However, these models consisted of far fewer free parameters as compared to the ANNs. The model comparison performed in this study highlights the need for researchers to consider the complexity of models so that their direct implementation is feasible.

Originality/value

This research produced a rapid EELTG prediction model for BCOAs that can be incorporated into the existing faulting model framework.

Article
Publication date: 15 June 2021

Qianyun Zhang, Julie M. Vandenbossche and Amir H. Alavi

Unbonded concrete overlays (UBOLs) are commonly used in pavement rehabilitation. The current models included in the Mechanistic-Empirical Pavement Design Guide cannot properly…

Abstract

Purpose

Unbonded concrete overlays (UBOLs) are commonly used in pavement rehabilitation. The current models included in the Mechanistic-Empirical Pavement Design Guide cannot properly predict the structural response of UBOLs. In this paper, a multigene genetic programming (MGGP) approach is proposed to derive new prediction models for the UBOLs response to temperature loading.

Design/methodology/approach

MGGP is a promising variant of evolutionary computation capable of developing highly nonlinear explicit models for characterizing complex engineering problems. The proposed UBOL response models are formulated in terms of several influencing parameters including joint spacing, radius of relative stiffness, temperature gradient and adjusted load/pavement weight ratio. Furthermore, linear regression models are developed to benchmark the MGGP models.

Findings

The derived design equations accurately characterize the UBOLs response under temperature loading and remarkably outperform the regression models. The conducted parametric analysis implies the efficiency of the MGGP-based model in capturing the underlying physical behavior of the UBOLs response to temperature loading. Based on the results, the proposed models can be reliably deployed for design purposes.

Originality/value

A challenge in the design of UBOLs is that their interlayer effects have not been directly considered in previous design procedures. To achieve better performance predictions, it is necessary to capture the effect of the interlayer in the design process. This study addresses this important issue via developing new models that can efficiently account for the effects of interlayer on the stress and deflections. In addition, it provides an insight into the effect of several parameters influencing the deflections of the UBOLs. From a computing perspective, a powerful evolutionary computation technique is introduced that overcomes the shortcomings of existing machine learning methods.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1988

Paul Nieuwenhuysen

The following bibliography focuses mainly on programs which can run on IBM microcomputers and compatibles under the operating system PC DOS/MS DOS, and which can be used in online…

Abstract

The following bibliography focuses mainly on programs which can run on IBM microcomputers and compatibles under the operating system PC DOS/MS DOS, and which can be used in online information and documentation work. They fall into the following categories:

Details

The Electronic Library, vol. 6 no. 4
Type: Research Article
ISSN: 0264-0473

1 – 3 of 3