Search results

1 – 10 of 16
Article
Publication date: 5 May 2015

Ankit Garg, Akhil Garg, Wan-Huan Zhou, Kang Tai and M C Deo

For measuring the effect of crop root content on soil water retention curves (SWRC), a simulation approach (multi-gene genetic programming (MGGP)), which develops the model…

Abstract

Purpose

For measuring the effect of crop root content on soil water retention curves (SWRC), a simulation approach (multi-gene genetic programming (MGGP)), which develops the model structure and its coefficients automatically can be applied. However, it does not perform well due to two vital issues related to its generalization: inappropriate formulation procedure of the multi-gene model and the difficulty in model selection. The purpose of this paper is to propose a heuristic-based-MGGP (N-MGGP) to formulate the functional relationship between the water content and two input parameters (soil suction and volumetric crop root content).

Design/methodology/approach

A new simulation approach (heuristic-based-MGGP (N-MGGP)), was proposed to formulate the functional relationship between the water content and two input parameters (soil suction and volumetric crop root content). The proposed approach makes use of a statistical approach of stepwise regression and classification methods (Bayes naïve and artificial neural network (ANN)) to tackle the two issues. Simulated data obtained from the models was evaluated against the experimental data.

Findings

The performance of proposed approach was found to better than that of standardized MGGP. Sensitivity and parametric analysis conducted validates the robustness of model by unveiling dominant input parameters and hidden non-linear relationships.

Originality/value

To the best of authors’ knowledge, an empirical model is developed that measures the effect of crop root content on the SWRCs. The authors also proposed a new genetic programming approach in simulating the crop root content dependent SWRCs.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 July 2015

Akhil Garg, Venkatesh Vijayaraghavan, Kang Tai, Pravin M Singru, Liang Gao and K S Sangwan

The functioning of multi-gene genetic programming (MGGP) algorithm suffers from the problem of difficulty in model selection. During the preliminary analysis, it is observed that…

Abstract

Purpose

The functioning of multi-gene genetic programming (MGGP) algorithm suffers from the problem of difficulty in model selection. During the preliminary analysis, it is observed that there are many models in the population whose performance is better than that of the model selected with a little compromise on training error. Therefore, an ensemble evolutionary (Ensemble-MGGP) approach is proposed and applied to the data obtained from the vibratory finishing process. The paper aims to discuss these issues.

Design/methodology/approach

Unlike the standard GP, each model participating in Ensemble-MGGP approach is made by combining the set of genes. Predicted residual sum of squares criterion (PRESS) criterion is integrated to improve its evolutionary search. The parametric analysis and sensitivity analysis (SA) conducted on the proposed model validates its robustness by unveiling dominant input parameters and hidden non-linear relationships.

Findings

The results indicate that the proposed Ensemble-MGGP model outperforms the standardized MGGP model. SA and parametric analysis reveals relationships and insights into vibratory finishing process.

Originality/value

Literature emphasises on characterization of vibratory finishing process using the experimental-based-studies. In addition, the issue of difficulty in model selection in genetic programming is addressed. This work proposes a new ensemble evolutionary approach to counter these issues.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 April 2024

Charles A. Donnelly, Sushobhan Sen, John W. DeSantis and Julie M. Vandenbossche

The time-varying equivalent linear temperature gradient (ELTG) significantly affects the development of faulting and must therefore be accounted for in pavement design. The same…

26

Abstract

Purpose

The time-varying equivalent linear temperature gradient (ELTG) significantly affects the development of faulting and must therefore be accounted for in pavement design. The same is true for faulting of bonded concrete overlays of asphalt (BCOA) with slabs larger than 3 x 3 m. However, the evaluation of ELTG in Mechanistic-Empirical (ME) BCOA design is highly time-consuming. The use of an effective ELTG (EELTG) is an efficient alternative to calculating ELTG. In this study, a model to quickly evaluate EELTG was developed for faulting in BCOA for panels 3 m or longer in size, whose faulting is sensitive to ELTG.

Design/methodology/approach

A database of EELTG responses was generated for 144 BCOAs at 169 locations throughout the continental United States, which was used to develop a series of prediction models. Three methods were evaluated: multiple linear regression (MLR), artificial neural networks (ANNs), and multi-gene genetic programming (MGGP). The performance of each method was compared, considering both accuracy and model complexity.

Findings

It was shown that ANNs display the highest accuracy, with an R2 of 0.90 on the validation dataset. MLR and MGGP models achieved R2 of 0.73 and 0.71, respectively. However, these models consisted of far fewer free parameters as compared to the ANNs. The model comparison performed in this study highlights the need for researchers to consider the complexity of models so that their direct implementation is feasible.

Originality/value

This research produced a rapid EELTG prediction model for BCOAs that can be incorporated into the existing faulting model framework.

Article
Publication date: 18 April 2017

Harsha Vardhan, Sanandam Bordoloi, Akhil Garg, Ankit Garg and Sreedeep S.

The purpose of this study is to measure the effects of density, moisture, fiber content on unconfined compressive strength (UCS) of soil by formulating the models based on…

Abstract

Purpose

The purpose of this study is to measure the effects of density, moisture, fiber content on unconfined compressive strength (UCS) of soil by formulating the models based on evolutionary approach and artificial neural networks (ANN).

Design/methodology/approach

The present work proposes evolutionary approach of multi-gene genetic programming (MGGP) to formulate the functional relationships between UCS of reinforced soil and four inputs (soil moisture, soil density, fiber content and unreinforced soil strength) of the silty sand. The hidden non-linear relationships between UCS of reinforced soil and the four inputs are determined by sensitivity and parametric analysis of the MGGP model.

Findings

The performance of MGGP is compared to those of ANN and the statistical analysis indicates that the MGGP model is the best and is able to generalize the UCS of reinforced soil satisfactorily beyond the given input range.

Research limitations/implications

The explicit MGGP model will be useful to provide optimum input values for design and analysis of various geotechnical infrastructures. In addition, utilization of Water hyacinth reinforced fiber reinforced soil will minimize negative impact of this species on environment and may generate rural employment.

Originality/value

This work is first of its kind in application and development of explicit holistic model for evaluating the compressive strength of heterogeneous soil blinded with fiber content. This includes the experimental and cross-validation for testing robustness of the model.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 February 2019

Sanjita Jaipuria and Siba Sankar Mahapatra

The purpose of this paper is to propose a forecasting model to predict the demand under uncertain environment to control the bullwhip effect (BWE) considering review-period…

Abstract

Purpose

The purpose of this paper is to propose a forecasting model to predict the demand under uncertain environment to control the bullwhip effect (BWE) considering review-period order-up-to level ((R, S)) inventory control policy and its different variants such as (R, βS) (R, γO) and (R, γO, βS) proposed by Jakšič and Rusjan, (2008) and Bandyopadhyay and Bhattacharya (2013).

Design/methodology/approach

A hybrid forecasting model has been developed by combining the feature of discrete wavelet transformation (DWT) and an intelligence technique, multi-gene genetic programming (MGGP), denoted as DWT-MGGP. Performance of DWT-MGGP model has been verified under (R, S) inventory control policy considering demand from three different manufacturing companies.

Findings

A comparison between DWT-MGGP model and autoregressive integrated moving average forecasting model has been done by estimating forecast error and BWE. Further, this study has been extended with analysing the behaviour of BWE considering different variants of (R, S) policy such as (R,βS) (R, γO) and (R,γO,βS) and found that BWE can be moderated by controlling the inventory smoothing (β) and order smoothing parameters (γ).

Research limitations/implications

This study is limited to different variants of (R, S) inventory control policy. However, this study can be further extended to continuous review policy.

Practical implications

The proposed DWT-MGGP model can be used as a suitable demand forecasting model to control the BWE when (R, S), (R,βS) (R,γO) and (R,γO,βS)inventory control policies are followed for replenishment.

Originality/value

This study analyses the behavior of BWE through controlling the inventory smoothing (β) and order smoothing parameters (γ) when demand is predicted using DWT-MGGP forecasting model and order is estimated using (R, S), (R,βS) (R,γO) and (R,γO,βS) inventory control policies.

Details

Journal of Modelling in Management, vol. 14 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 11 March 2014

A. Garg, K. Tai and M.M. Savalani

The empirical modelling of major rapid prototyping (RP) processes such as fused deposition modelling (FDM), selective laser sintering (SLS) and stereolithography (SL) has…

2045

Abstract

Purpose

The empirical modelling of major rapid prototyping (RP) processes such as fused deposition modelling (FDM), selective laser sintering (SLS) and stereolithography (SL) has attracted the attention of researchers in view of their contribution to the overall cost of the product. Empirical modelling techniques such as artificial neural network (ANN) and regression analysis have been paid considerable attention. In this paper, a powerful modelling technique using genetic programming (GP) for modelling the FDM process is introduced and the issues related to the empirical modelling of RP processes are discussed. The present work aims to investigate the performance of various potential empirical modelling techniques so that the choice of an appropriate modelling technique for a given RP process can be made. The paper aims to discuss these issues.

Design/methodology/approach

Apart from the study of applications of empirical modelling techniques on RP processes, a multigene GP is applied to predict the compressive strength of a FDM part based on five given input process parameters. The parameter setting for GP is determined using trial and experimental runs. The performance of the GP model is compared to those of neural networks and regression analysis.

Findings

The GP approach provides a model in the form of a mathematical equation reflecting the relationship between the compressive strength and five given input parameters. The performance of ANN is found to be better than those of GP and regression, showing the effectiveness of ANN in predicting the performance characteristics of the FDM part. The GP is able to identify the significant input parameters that comply with those of an earlier study. The distinct advantages of GP as compared to ANN and regression are highlighted. Several vital issues related to the empirical modelling of RP processes are also highlighted in the end.

Originality/value

For the first time, a review of the application of empirical modelling techniques on RP processes is undertaken and a new GP method for modelling the FDM process is introduced. The performance of potential empirical modelling techniques for modelling RP processes is evaluated. This is an important step in modernising the era of empirical modelling of RP processes.

Article
Publication date: 14 March 2019

Mohammadreza Mirzahosseini, Pengcheng Jiao, Kaveh Barri, Kyle A. Riding and Amir H. Alavi

Recycled waste glasses have been widely used in Portland cement and concrete as aggregate or supplementary cementitious material. Compressive strength is one of the most important…

Abstract

Purpose

Recycled waste glasses have been widely used in Portland cement and concrete as aggregate or supplementary cementitious material. Compressive strength is one of the most important properties of concrete containing waste glasses, providing information about the loading capacity, pozzolanic reaction and porosity of the mixture. This study aims to propose highly nonlinear models to predict the compressive strength of concrete containing finely ground glass particles.

Design/methodology/approach

A robust machine leaning method called genetic programming is used the build the compressive strength prediction models. The models are developed using a number of test results on 50-mm mortar cubes containing glass powder according to ASTM C109. Parametric and sensitivity analyses are conducted to evaluate the effect of the predictor variables on the compressive strength. Furthermore, a comparative study is performed to benchmark the proposed models against classical regression models.

Findings

The derived design equations accurately characterize the compressive strength of concrete with ground glass fillers and remarkably outperform the regression models. A key feature of the proposed models as compared to the previous studies is that they include the simultaneous effect of various parameters such as glass compositions, size distributions, curing age and isothermal temperatures. Parametric and sensitivity analyses indicate that compressive strength is very sensitive to the curing age, curing temperature and particle surface area.

Originality/value

This study presents accurate machine learning models for the prediction of one of the most important mechanical properties of cementitious mixtures modified by waste glass, i.e. compressive strength. In addition, it provides an insight into the effect of several parameters influencing the compressive strength. From a computing perspective, a robust machine learning technique that overcomes the shortcomings of existing soft computing methods is introduced.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 August 2022

Zibo Li, Zhengxiang Yan, Shicheng Li, Guangmin Sun, Xin Wang, Dequn Zhao, Yu Li and Xiucheng Liu

The purpose of this paper is to overcome the application limitations of other multi-variable regression based on polynomials due to the huge computation room and time cost.

Abstract

Purpose

The purpose of this paper is to overcome the application limitations of other multi-variable regression based on polynomials due to the huge computation room and time cost.

Design/methodology/approach

In this paper, based on the idea of feature selection and cascaded regression, two strategies including Laguerre polynomials and manifolds optimization are proposed to enhance the accuracy of multi-variable regression. Laguerre polynomials were combined with the genetic algorithm to enhance the capacity of polynomials approximation and the manifolds optimization method was introduced to solve the co-related optimization problem.

Findings

Two multi-variable Laguerre polynomials regression methods are designed. Firstly, Laguerre polynomials are combined with feature selection method. Secondly, manifolds component analysis is adopted in cascaded Laguerre polynomials regression method. Two methods are brought to enhance the accuracy of multi-variable regression method.

Research limitations/implications

With the increasing number of variables in regression problem, the stable accuracy performance might not be kept by using manifold-based optimization method. Moreover, the methods mentioned in this paper are not suitable for the classification problem.

Originality/value

Experiments are conducted on three types of datasets to evaluate the performance of the proposed regression methods. The best accuracy was achieved by the combination of cascade, manifold optimization and Chebyshev polynomials, which implies that the manifolds optimization has stronger contribution than the genetic algorithm and Laguerre polynomials.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2021

Qianyun Zhang, Julie M. Vandenbossche and Amir H. Alavi

Unbonded concrete overlays (UBOLs) are commonly used in pavement rehabilitation. The current models included in the Mechanistic-Empirical Pavement Design Guide cannot properly…

Abstract

Purpose

Unbonded concrete overlays (UBOLs) are commonly used in pavement rehabilitation. The current models included in the Mechanistic-Empirical Pavement Design Guide cannot properly predict the structural response of UBOLs. In this paper, a multigene genetic programming (MGGP) approach is proposed to derive new prediction models for the UBOLs response to temperature loading.

Design/methodology/approach

MGGP is a promising variant of evolutionary computation capable of developing highly nonlinear explicit models for characterizing complex engineering problems. The proposed UBOL response models are formulated in terms of several influencing parameters including joint spacing, radius of relative stiffness, temperature gradient and adjusted load/pavement weight ratio. Furthermore, linear regression models are developed to benchmark the MGGP models.

Findings

The derived design equations accurately characterize the UBOLs response under temperature loading and remarkably outperform the regression models. The conducted parametric analysis implies the efficiency of the MGGP-based model in capturing the underlying physical behavior of the UBOLs response to temperature loading. Based on the results, the proposed models can be reliably deployed for design purposes.

Originality/value

A challenge in the design of UBOLs is that their interlayer effects have not been directly considered in previous design procedures. To achieve better performance predictions, it is necessary to capture the effect of the interlayer in the design process. This study addresses this important issue via developing new models that can efficiently account for the effects of interlayer on the stress and deflections. In addition, it provides an insight into the effect of several parameters influencing the deflections of the UBOLs. From a computing perspective, a powerful evolutionary computation technique is introduced that overcomes the shortcomings of existing machine learning methods.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 October 2020

Bharat Bhushan Mishra, Ajay Kumar, Pijush Samui and Thendiyath Roshni

The purpose of this paper is to attempt the buckling analysis of a laminated composite skew plate using the C0 finite element (FE) model based on higher-order shear deformation…

Abstract

Purpose

The purpose of this paper is to attempt the buckling analysis of a laminated composite skew plate using the C0 finite element (FE) model based on higher-order shear deformation theory (HSDT) in conjunction with minimax probability machine regression (MPMR) and multivariate adaptive regression spline (MARS).

Design/methodology/approach

HSDT considers the third-order variation of in-plane displacements which eliminates the use of shear correction factor owing to realistic parabolic transverse shear stresses across the thickness coordinate. At the top and bottom of the plate, zero transverse shear stress condition is imposed. C0 FE model based on HSDT is developed and coded in formula translation (FORTRAN). FE model is validated and found efficient to create new results. MPMR and MARS models are coded in MATLAB. Using skew angle (α), stacking sequence (Ai) and buckling strength (Y) as input parameters, a regression problem is formulated using MPMR and MARS to predict the buckling strength of laminated composite skew plates.

Findings

The results of the MPMR and MARS models are in good agreement with the FE model result. MPMR is a better tool than MARS to analyze the buckling problem.

Research limitations/implications

The present work considers the linear behavior of the laminated composite skew plate.

Originality/value

To the authors’ best of knowledge, there is no work in the literature on the buckling analysis of a laminated composite skew plate using C0 FE formulation based on third-order shear deformation theory in conjunction with MPMR and MARS. These machine-learning techniques increase efficiency, reduce the computational time and reduce the cost of analysis. Further, an equation is generated with the MARS model via which the buckling strength of the laminated composite skew plate can be predicted with ease and simplicity.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 16