Search results

1 – 10 of 108
Article
Publication date: 5 July 2022

Armin Yousefi Kanani, Allan E.W. Rennie and Shayfull Zamree Bin Abd Rahim

This study aims to make foamed polylactic acid (PLA) structures with different densities by varying deposition temperatures using the material extrusion (MEX) additive…

Abstract

Purpose

This study aims to make foamed polylactic acid (PLA) structures with different densities by varying deposition temperatures using the material extrusion (MEX) additive manufacturing process.

Design/methodology/approach

The extrusion multiplier (EM) was calibrated for each deposition temperature to control foaming expansion. Material density was determined using extruded cubes with the optimal EM value for each deposition temperature. The influence of deposition temperature on the tensile, compression and flexure characteristics of the foamable filament was studied experimentally.

Findings

The foaming expansion ratio, the consistency of the raster width and the raster gap significantly affect the surface roughness of the printed samples. Regardless of the loading conditions, the maximum stiffness and yield strength were achieved at a deposition temperature of 200°C when the PLA specimens had no foam. When the maximum foaming occurred (220°C deposition temperature), the stiffness and yield strength of the PLA specimens were significantly reduced.

Practical implications

The obvious benefit of using foamed materials is that they are lighter and consume less material than bulky polymers. Injection or compression moulding is the most commonly used method for creating foamed products. However, these technologies require tooling to fabricate complicated parts, which may be costly and time-consuming. Conversely, the MEX process can produce extremely complex parts with less tooling expense, reduction in energy use and optimised material consumption.

Originality/value

This study investigates the possibility of stiff, lightweight structures with low fractions of interconnected porosity using foamable filament.

Article
Publication date: 31 July 2023

Iniya Dinakaran, Chowdhury Sakib-Uz-Zaman, Arafater Rahman and Mohammad Abu Hasan Khondoker

This paper aims to understand the effect of extrusion conditions on the degree of foaming of polylactic acid (PLA) during three-dimensional (3D) printing. It was also targeted to…

Abstract

Purpose

This paper aims to understand the effect of extrusion conditions on the degree of foaming of polylactic acid (PLA) during three-dimensional (3D) printing. It was also targeted to optimize the slicing parameters for 3D printing and to study how the properties of printed parts are influenced by the extrusion conditions.

Design/methodology/approach

This study used a commercially available PLA filament that undergoes chemical foaming. An extrusion 3D printer was used to produce individual extrudates and print samples that were characterized using an optical microscope, scanning electron microscope and custom in-house apparatuses.

Findings

The degree of foaming of the extrudates was found to strongly depend on the extrusion temperature and the material feed speed. Higher temperatures significantly increased the number of nucleation sites for the blowing agent as well as the growth rate of micropores. Also, as the material feed speed increased, the micropores were allowed to grow bigger which resulted in higher degrees of foaming. It was also found that, as the degree of foaming increased, the porous parts printed with optimized slicing parameters were lightweight and thermally less conductive.

Originality/value

This study fills the gap in literature where it examines the foaming behavior of individual extrudates as they are extruded. By doing so, this work distinguishes the effect of extrusion conditions from the effect of slicing parameters on the foaming behavior which enhances the understanding of extrusion of chemically foamed PLA.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 December 2021

Rui Yan, Yuye Wang, Pengjun Luo, Yangbo Li and Xiaochun Lu

The limited strength of polylactic acid (PLA) hinders its extensive engineering applications. This paper aims to enhance its strength and realize diverse applications.

228

Abstract

Purpose

The limited strength of polylactic acid (PLA) hinders its extensive engineering applications. This paper aims to enhance its strength and realize diverse applications.

Design/methodology/approach

Here, the continuous fiber reinforced PLA composites are fabricated by a customized fused filament fabrication three-dimensional printer. Uniaxial tensile and three-point flexural tests have been conducted to analyze the reinforcement effect of the proposed composites. To unveil the adhering mechanism of optic fiber (OF) and PLA, post failure analysis including the micro imaging and morphology have been performed. The underlying mechanism is that the axial tensile strength of the OF and the interfacial adhesion between PLA and OF compete to enhance the mechanical properties of the composite.

Findings

It is found that 10%–20% enhancement of strength, ductility and toughness due to the incorporation of the continuous OF.

Originality/value

The continuous OFs are put into PLA first time to improve the strength. The fabrication method and process reported here are potentially applied in such engineering applications as aerospace, defense, auto, medicine, etc.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 May 2024

Alaeddin Burak Irez and Merve Bilgen Bagci

This study aims to examine how the thickness of layers and printing speed impact the energy absorption capacity of honeycomb structures through drop-weight experiments. In…

Abstract

Purpose

This study aims to examine how the thickness of layers and printing speed impact the energy absorption capacity of honeycomb structures through drop-weight experiments. In addition, the effect of printing orientation on the resulting microstructure and mechanical performance was targeted to be examined.

Design/methodology/approach

In this paper, after manufacturing test specimens using fused deposition modeling technique with three distinct layer thicknesses (0.16 mm, 0.20 mm and 0.28 mm) and printing speeds (40 mm/min, 50 mm/min and 70 mm/min), drop weight tests were carried out. Then to see the effect of printing orientation on mechanical performance, three-point-bending tests were performed and damage mechanisms were comparatively examined through scanning electron microscopy.

Findings

An increase in layer thickness from 0.16 mm to 0.28 mm resulted in a notable 37% decrease in the impact resistance of the printed part. In addition, increasing the printing speed from 50 to 70 mm/min reduced the energy absorption capacity of the printed part by approximately 36.5%. Moreover, in terms of printing direction, transversely printed specimens showed 10% lower flexural strength than longitudinally printed specimens. Finally, scanning electron microscopy (SEM) observation showed that internal defects were more prominent in transversely printed specimens, resulting in premature failure. Furthermore, delamination was also detected in transversely printed specimens as another damage mechanism accelerating material failure.

Originality/value

It is seen that the effect of printing parameters on the fundamental mechanical properties including tensile strength, strain at break, ductility and elastic modulus were studied by various researchers. However, to the best of authors’ knowledge, the effect of printing speed and layer thickness on the energy absorption of polylactic acid based hexagonal honeycomb was not encountered. In addition, in-depth SEM analysis to discover the influence of printing direction significantly contributes to the literature.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 March 2022

Farah Syazwani Shahar, Mohamed Thariq Hameed Sultan, Syafiqah Nur Azrie Safri, Mohammad Jawaid, Abd. Rahim Abu Talib, Adi Azriff Basri and Ain Umaira Md Shah

This paper aims to discuss the physical and thermal properties of the three-dimensional (3D) printing natural composite filament, as well as the tensile behaviour of the printed…

Abstract

Purpose

This paper aims to discuss the physical and thermal properties of the three-dimensional (3D) printing natural composite filament, as well as the tensile behaviour of the printed composites to get an insight of its possibility to be used as an ankle–foot orthosis (AFO) material.

Design/methodology/approach

Physical test that was conducted includes scanning electron microscopy analysis, thermogravimetric/differential scanning calorimetry analysis as well as the effect of fibre load after extrusion on the filament morphology. Tensile test was conducted with different amounts of fibre loads (0, 3, 5 and 7 Wt.%) on the printed specimens.

Findings

There is an increment of strength as the fibre load is increased to 3 Wt.%; however, it decreases significantly as it is increased to 5 and 7 Wt.% because of the presence of voids. It also shows that the extrusion temperature severely affects the structure of the filaments, which will then affect the strength of the printed composites. Based on the results, it is possible to use kenaf/polylactic acid (PLA) filament to print out AFO as long as the filament production and printing process are being controlled properly.

Originality/value

The unique aspect of this paper is the investigation of kenaf/PLA filament as a material for 3D printing, as well as its material consideration for AFO manufacturing. This paper also studies the effect of extrusion temperature on the morphological structure of the filament and its effect on the tensile properties of the printed kenaf/PLA specimen.

Article
Publication date: 28 January 2020

Sathies T., Senthil P. and Anoop M.S.

Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of…

1543

Abstract

Purpose

Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of additive manufacturing (AM) comes into existence and fused deposition modelling (FDM), is at the forefront of researches related to polymer-based additive manufacturing. The purpose of this paper is to summarize the research works carried on the applications of FDM.

Design/methodology/approach

In the present paper, an extensive review has been performed related to major application areas (such as a sensor, shielding, scaffolding, drug delivery devices, microfluidic devices, rapid tooling, four-dimensional printing, automotive and aerospace, prosthetics and orthosis, fashion and architecture) where FDM has been tested. Finally, a roadmap for future research work in the FDM application has been discussed. As an example for future research scope, a case study on the usage of FDM printed ABS-carbon black composite for solvent sensing is demonstrated.

Findings

The printability of composite filament through FDM enhanced its application range. Sensors developed using FDM incurs a low cost and produces a result comparable to those conventional techniques. EMI shielding manufactured by FDM is light and non-oxidative. Biodegradable and biocompatible scaffolds of complex shapes are possible to manufacture by FDM. Further, FDM enables the fabrication of on-demand and customized prosthetics and orthosis. Tooling time and cost involved in the manufacturing of low volume customized products are reduced by FDM based rapid tooling technique. Results of the solvent sensing case study indicate that three-dimensional printed conductive polymer composites can sense different solvents. The sensors with a lower thickness (0.6 mm) exhibit better sensitivity.

Originality/value

This paper outlines the capabilities of FDM and provides information to the user about the different applications possible with FDM.

Details

Rapid Prototyping Journal, vol. 26 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 July 2022

Shafahat Ali, Said Abdallah, Deepak H. Devjani, Joel S. John, Wael A. Samad and Salman Pervaiz

This paper aims to investigate the effects of build parameters and strain rate on the mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) by integrating…

Abstract

Purpose

This paper aims to investigate the effects of build parameters and strain rate on the mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) by integrating digital image correlation and desirability function analysis. The build parameters included in this paper are the infill density, build orientation and layer height. These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design.

Design/methodology/approach

The Taguchi method was used to shortlist a set of 18 different combinations of build parameters and testing conditions. Accordingly, 18 specimens were 3D printed using those combinations and put through a series of uniaxial tensions tests with digital image correlation. The mechanical properties deduced for all 18 tests were then used in a desirability function analysis where the mechanical properties were optimized to determine the ideal combination of build parameters and strain rate loading conditions.

Findings

By comparing the tensile mechanical experimental properties results between Taguchi's recommended parameters and the optimal parameter found from the response table of means, the composite desirability had increased by 2.08%. The tensile mechanical properties of the PLA specimens gradually decrease with an increase in the layer height, while they increase with increasing the infill densities. On the other hand, the mechanical properties have been affected by the build orientation and the strain rate in similar increasing/decreasing trends. Additionally, the obtained optimized results suggest that changing the infill density has a notable impact on the overall result, with a contribution of 48.61%. DIC patterns on the upright samples revealed bimodal strain patterns rendering them more susceptible to failures because of printing imperfections.

Originality/value

These findings provide a framework for systematic mechanical characterization of 3D-printed PLA and potential ways of choosing process parameters to maximize performance for a given design.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 November 2023

Jinyu Zhang, Danni Shen, Yuxiang Yu, Defu Bao, Chao Li and Jiapei Qin

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused…

Abstract

Purpose

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused deposition modeling (FDM) 3D printing technology, and tries to refine the product development path for this composite.

Design/methodology/approach

Polylactic acid (PLA) printing filaments were deposited on prestretched Lycra-knitted fabric using desktop-level FDM 3D printing technology to construct a three-layer structure of thermally responsive 4D textiles. Subsequently, the effects of different PLA thicknesses and Lycra knit fabric relative elongation on the permanent shape of thermally responsive 4D textiles were studied. Finally, a simulation program was written, and a case in this study demonstrates the usage of thermally responsive 4D textiles and the simulation program to design a wrist support product.

Findings

The constructed three-layer structure of PLA and Lycra knitted fabric can self-form under thermal stimulation. The material can also achieve reversible transformation between a permanent shape and multiple temporary shapes. Thinner PLA deposition and higher relative elongation of the Lycra-knitted fabric result in the greater curvature of the permanent shape of the thermally responsive 4D textile. The simulation program accurately predicted the permanent form of multiple basic shapes.

Originality/value

The proposed method enables 4D textiles to directly self-form upon thermal, which helps to improve the manufacturing efficiency of 4D textiles. The thermal responsiveness of the composite also contributes to building an intelligent human–material–environment interaction system.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 February 2019

Pedro Miguel Cardoso Carneiro and Pedro Gamboa

Additive manufacturing (AM) has emerged over the past years as a key technology in aircraft structural components’ manufacturing. This paper aims to describe the numerical…

Abstract

Purpose

Additive manufacturing (AM) has emerged over the past years as a key technology in aircraft structural components’ manufacturing. This paper aims to describe the numerical analysis and experimental testing of five wing ribs with different 2D topologies manufactured with polylactic acid (PLA) using the fused deposition modeling technology. The main purpose is to determine the best wing rib topology in terms of strength, stiffness and mass.

Design/methodology/approach

Numerical analyses are performed using Ansys Workbench’s static structural analysis for two distinct loading cases. In the first loading, the chord-wise distributed load, resulting from wing lift, is replaced by two equivalent concentrated loads at the leading and trailing edges. This simplification allows the numerical results to be experimentally validated. The second loading has distributed loads applied on the upper and on the lower surfaces of the wing rib to produce a more realistic structural response. Experimental tests are performed with the first loading case to determine maximum displacement and failure loads of the wing ribs studied. SEM is used to analyze fracture surfaces.

Findings

From the five different PLA printed wing rib topologies studied, it is found that truss type configurations are the more structural efficient, that is, truss topologies exhibit better specific strength and specific stiffness. Additionally, the limiting factor in the design of these wing ribs is stiffness rather than strength.

Originality/value

The work identifies the kind of structural topologies that are best suited for 2D wing ribs obtained by AM and leads the way to more complex and more efficient structural layouts to be explored in the future using topology optimization coupled with simple Finite Element Analysis (FEA).

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 April 2024

Muhammad Abas, Tufail Habib and Sahar Noor

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D…

Abstract

Purpose

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D scanning with the Kinect sensor and conducts a comparative analysis of SAFO durability with varying thicknesses and materials, including polylactic acid (PLA) and carbon fiber-reinforced (PLA-C), to address research gaps from prior studies.

Design/methodology/approach

In this study, the methodology comprises key components: data capture using a cost-effective Microsoft Kinect® Xbox 360 scanner to obtain precise leg dimensions for SAFOs. SAFOs are designed using CAD tools with varying thicknesses (3, 4, and 5 mm) while maintaining consistent geometry, allowing controlled thickness impact investigation. Fabrication uses PLA and PLA-C materials via FDM 3D printing, providing insights into material suitability. Mechanical analysis uses dual finite element analysis to assess force–displacement curves and fracture behavior, which were validated through experimental testing.

Findings

The results indicate that the precision of the scanned leg dimensions, compared to actual anthropometric data, exhibits a deviation of less than 5%, confirming the accuracy of the cost-effective scanning approach. Additionally, the research identifies optimal thicknesses for SAFOs, recommending a 4 and 5 mm thickness for PLA-C-based SAFOs and an only 5 mm thickness for PLA-based SAFOs. This optimization enhances the overall performance and effectiveness of these orthotic solutions.

Originality/value

This study’s innovation lies in its holistic approach, combining low-cost 3D scanning, 3D printing and computational simulations to optimize SAFO materials and thickness. These findings advance the creation of cost-effective and efficient orthotic solutions.

1 – 10 of 108