Search results

1 – 10 of over 77000

Abstract

Details

Transportation and Traffic Theory in the 21st Century
Type: Book
ISBN: 978-0-080-43926-6

Open Access
Article
Publication date: 17 November 2023

Qi Xiao, Weidong Yu, Guangrong Tian and Fangxuan Li

This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.

Abstract

Purpose

This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.

Design/methodology/approach

Chinese wagons' existing maintenance strategy had left a certain safety margin for the characteristics of widely running range, unstable service environment and submission to transportation organization requirements. To reduce maintenance costs, China railway (CR) has attempted to extend the maintenance interval since 2020. The maintenance cycle of C80 series heavy haul wagons is extended by three months (no stable routing) or 50,000 km (regular routing). However, in the meantime, the alarming rate of the running state, a key index to reflect the severe degree of hunting stability, by the train performance detection system (TPDS) for the C80 series heavy haul wagons has increased significantly.

Findings

The present paper addresses a big data statistical way to evaluate the risk of allowing the C80 series heavy haul wagons to remain in operation longer than stipulated by the maintenance interval initial set. Through the maintenance and wayside-detector data, which is divided into three stages, the extension period (three months), the current maintenance period and the previous maintenance period, this method reveals the alarming rate of hunting was correlated with maintenance interval. The maintainability of wagons will be achieved by utilizing wagon performance degradation modeling with the state of the wheelset and the often-contact side bearing. This paper also proposes a statistical model to return to the average safety level of the previous maintenance period's baseline through correct alarming thresholds for unplanned corrective maintenance.

Originality/value

The paper proposes an approach to reduce safety risk due to maintenance interval extension by effective maintenance program. The results are expected to help the railway company make the optimal solution to balance safety and the economy.

Article
Publication date: 21 May 2024

Aoxiang Cheng and Youyi Bi

The purpose of this paper is to present an integrated data-driven framework for processing and analyzing large-scale vehicle maintenance records to get more comprehensive…

Abstract

Purpose

The purpose of this paper is to present an integrated data-driven framework for processing and analyzing large-scale vehicle maintenance records to get more comprehensive understanding on vehicle quality.

Design/methodology/approach

We propose a framework for vehicle quality analysis based on maintenance record mining and Bayesian Network. It includes the development of a comprehensive dictionary for efficient classification of maintenance items, and the establishment of a Bayesian Network model for vehicle quality evaluation. The vehicle design parameters, price and performance of functional systems are modeled as node variables in the Bayesian Network. Bayesian Network reasoning is then used to analyze the influence of these nodes on vehicle quality and their respective importance.

Findings

A case study using the maintenance records of 74 sport utility vehicle (SUV) models is presented to demonstrate the validity of the proposed framework. Our results reveal that factors such as vehicle size, chassis issues and engine displacement, can affect the chance of vehicle failures and accidents. The influence of factors such as price and performance of engine and chassis show explicit regional differences.

Originality/value

Previous research usually focuses on limited maintenance records from a single vehicle producer, while our proposed framework enables efficient and systematic processing of larger-scale maintenance records for vehicle quality analysis, which can support auto companies, consumers and regulators to make better decisions in purchase choice-making, vehicle design and market regulation.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 May 2024

Ashish Kumar

This paper aims to empirically investigate the effect of facility–maintenance service quality on tenants’ satisfaction and their subsequent willingness to pay higher rent in the…

Abstract

Purpose

This paper aims to empirically investigate the effect of facility–maintenance service quality on tenants’ satisfaction and their subsequent willingness to pay higher rent in the National Capital Region (NCR), India.

Design/methodology/approach

The data for this study was collected from 1,692 tenants in NCR, India. SmartPLS4.0 was used to analyze the data using structured equation modeling.

Findings

The study findings indicate that all parameters of facility–maintenance service quality (tangibles, service personnel quality and empathy) positively impact tenants’ satisfaction. Further, satisfied tenants are willing to pay higher rentals. In addition, customer satisfaction partially mediates the relationship between facility–maintenance service quality and willingness to pay higher rent.

Research limitations/implications

The study extends evidence-based research in the service industry to provide empirical evidence that facility–maintenance service quality positively impacts customer satisfaction in real estate settings in emerging markets (India). This research will guide future researchers to explore other dimensions to support evidence-based research in real estate settings.

Practical implications

Based on the data collected online after personal interaction in residents’ meetings, the study findings provide significant insights for stakeholders such as policymakers, practitioners, landlords, associations and builders. With rising housing demand because of rural migrations toward urban or metro locations coupled with the government’s inability to expand the infrastructure simultaneously, the government has enhanced the role of public–private partnership (PPP) in housing development. The findings will help policymakers incorporate the service angle into key performance indicators in PPP contracts. Additionally, with rising competition in the housing sector, understanding these factors will help landlords and resident associations improve service quality standards, thus enhancing the residential societies’ word-of-mouth publicity and attracting high-paying residents.

Originality/value

To the best of author’s knowledge, this is a pioneer study to empirically investigate the impact of facility–maintenance service quality standards on tenants’ satisfaction and willingness to pay higher rent in a residential setting in India.

Article
Publication date: 21 May 2024

Adel Ali Ahmed Qaid, Rosmaini Ahmad, Shaliza Azreen Mustafa and Badiea Abdullah Mohammed

This study presents a systematic framework for maintenance strategy development of manufacturing process machinery. The framework is developed based on the reliability-centred…

Abstract

Purpose

This study presents a systematic framework for maintenance strategy development of manufacturing process machinery. The framework is developed based on the reliability-centred maintenance (RCM) approach to minimise the high downtime of a production line, thus increasing its reliability and availability. A case study of a production line from the ghee and soap manufacturing industry in Taiz, Yemen, is presented for framework validation purposes. The framework provides a systematic process to identify the critical system(s) and guide further investigation for functional significant items (FSIs) based on quantitative and qualitative analyses before recommending appropriate maintenance strategies and specific tasks.

Design/methodology/approach

The proposed framework integrates conventional RCM procedure with the fuzzy computational process to improve FSIs criticality estimation, which is the main part of failure mode effect criticality analysis (FMECA) applications. The framework consists of four main implementation stages: identification of the critical system(s), technical analysis, Fuzzy-FMECA application for FSIs criticality estimation and maintenance strategy selection. Each stage has its objective(s) and related scientific techniques that are applied to systematically guide the framework implementation.

Findings

The proposed framework validation is summarised as follows. The first stage results demonstrate that the seaming system (top and bottom systems) caused 50% of the total production line downtime, indicating it is a critical system that requires further analysis. The outcomes of the second stage provide significant technical information on the subject (seaming system), helping team members to identify and understand the structure and functional complexities of the seaming system. This stage also provides a better understanding of how the seaming system functions and how it can fail. In stage 3, the application of FMECA with the fuzzy computation integration process presents a systematic way to analyse the failure mode, effect and cause of items (components of the seaming system). This stage also includes items’ criticality estimation and ranking assessment. Finally, stage four guides team members in recommending the appropriate countermeasures (maintenance strategies and task selection) based on their priority level.

Originality/value

This paper proposes an original maintenance strategies development framework based on the RCM approach for production system equipment. Specifically, it considers a fuzzy computational process based on the Gaussian function in the third stage of the proposed framework. Adopting the fuzzy computational process improves the risk priority number (RPN) estimation, resulting in better criticality ranking determination. Another significant contribution is introducing an extended item criticality ranking assessment process to provide maximum levels of criticality item ranking. Finally, the proposed RCM framework also provides detailed guidance on maintenance strategy selection based on criticality levels, unique functionality and failure characteristics of each FSI.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 26 April 2024

Mawloud Titah and Mohammed Abdelghani Bouchaala

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely…

Abstract

Purpose

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely and precise patient care.

Design/methodology/approach

The system is designed to function both as an information portal and a decision-support system. A knowledge-based approach is adopted centered on Semantic Web Technologies (SWTs), leveraging a customized ontology model for healthcare facilities’ knowledge capitalization. Semantic Web Rule Language (SWRL) is integrated to address decision-support aspects, including equipment criticality assessment, maintenance strategies selection and contracting policies assignment. Additionally, Semantic Query-enhanced Web Rule Language (SQWRL) is incorporated to streamline the retrieval of decision-support outcomes and other useful information from the system’s knowledge base. A real-life case study conducted at the University Hospital Center of Oran (Algeria) illustrates the applicability and effectiveness of the proposed approach.

Findings

Case study results reveal that 40% of processed equipment is highly critical, 40% is of medium criticality, and 20% is of negligible criticality. The system demonstrates significant efficacy in determining optimal maintenance strategies and contracting policies for the equipment, leveraging combined knowledge and data-driven inference. Overall, SWTs showcases substantial potential in addressing maintenance management challenges within healthcare facilities.

Originality/value

An innovative model for healthcare equipment maintenance management is introduced, incorporating ontology, SWRL and SQWRL, and providing efficient data integration, coordinated workflows and data-driven context-aware decisions, while maintaining optimal flexibility and cross-departmental interoperability, which gives it substantial potential for further development.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 18 April 2024

Jibran Abbas and Ashish Khare

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component…

Abstract

Purpose

According to regulations, aircraft must be in an airworthy condition before they can be operated. To ensure airworthiness, they must be maintained by an approved component maintenance organisation. This study is aimed to identify potential errors that may arise during the final inspection and certification process of aircraft components, categorise them, determine their consequences and quantify the associated risks. Any removed aircraft components must be sent to an approved aircraft component maintenance organisation for further maintenance and issuance of European Union Aviation Safety Agency (EASA) Form 1. Thereafter, a final inspection and certification process must be conducted by certifying staff to receive an EASA Form 1. This process is crucial because any errors during this stage can result in the installation of unsafe components in an aircraft.

Design/methodology/approach

The Systematic Human Error Reduction and Prediction Approach (SHERPA) method was used to identify potential errors. This method involved a review of the procedures of three maintenance organisations, individual interviews with ten subject matter experts and a consensus group of 14 certifying staff from different maintenance organisations to achieve the desired results.

Findings

In this study, 39 potential errors were identified during the final inspection and certification process. Furthermore, analysis revealed that 48.7% of these issues were attributed to checking errors, making it the most common type of error observed.

Originality/value

This study pinpoints the potential errors in the final inspection and certification of aircraft components. It offers maintenance organisations a roadmap to assess procedures, implement preventive measures and reduce the likelihood of these errors.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 April 2024

Zul-Atfi Ismail

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance

Abstract

Purpose

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance planning and management are integral components of the construction sector, serving the broader purpose of post-construction activities and processes. However, as Precast Concrete (PC) construction projects increase in scale and complexity, the interconnections among these activities and processes become apparent, leading to planning and performance management challenges. These challenges specifically affect the monitoring of façade components for corrective and preventive maintenance actions.

Design/methodology/approach

The concept of maintenance planning for façades, along with the main features of information and communication technology tools and techniques using building information modeling technology, is grounded in the analysis of numerous literature reviews in PC building scenarios.

Findings

This research focuses on an integrated system designed to analyze information and support decision-making in maintenance planning for PC buildings. It is based on robust data collection regarding concrete façades' failures and causes. The system aims to provide appropriate planning decisions and minimize the risk of façade failures throughout the building's lifetime.

Originality/value

The study concludes that implementing a research framework to develop such a system can significantly enhance the effectiveness of maintenance planning for façade design, construction and maintenance operations.

Details

Facilities , vol. 42 no. 7/8
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 1 June 1991

Michael Thompson and Yunus Kathawala

This article evaluates maintenance management in an electric utility setting. It begins with a historical review before discussing present pressures on management and the new…

Abstract

This article evaluates maintenance management in an electric utility setting. It begins with a historical review before discussing present pressures on management and the new importance of maintenance costs. It discusses remedial, preventive and predictive maintenance, and the implications of each one of these maintenance functions.

Details

International Journal of Quality & Reliability Management, vol. 8 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 October 2000

H. van de Water

In this article a model is presented concerning the organisation of the maintenance process of a quality system. This model consists of the composition of two existing models. The…

4379

Abstract

In this article a model is presented concerning the organisation of the maintenance process of a quality system. This model consists of the composition of two existing models. The point of departure is a three‐level model of quality management. Then each of these three levels has been split up into two components called “system‐structural” and “social‐structural”. After introducing several maintenance concepts on a conceptual level, these concepts are applied to each of these levels and components.

Details

International Journal of Quality & Reliability Management, vol. 17 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 77000