Search results

1 – 10 of over 1000
Book part
Publication date: 29 January 2013

Zbigniew Smoreda, Ana-Maria Olteanu-Raimond and Thomas Couronné

Purpose — In this chapter, we will review several alternative methods of collecting data from mobile phones for human mobility analysis. We propose considering cellular network…

Abstract

Purpose — In this chapter, we will review several alternative methods of collecting data from mobile phones for human mobility analysis. We propose considering cellular network location data as a useful complementary source for human mobility research and provide case studies to illustrate the advantages and disadvantages of each method.

Methodology/approach — We briefly describe cellular phone network architecture and the location data it can provide, and discuss two types of data collection: active and passive localization. Active localization is something like a personal travel diary. It provides a tool for recording positioning data on a survey sample over a long period of time. Passive localization, on the other hand, is based on phone network data that are automatically recorded for technical or billing purposes. It offers the advantage of access to very large user populations for mobility flow analysis of a broad area.

Findings — We review several alternative methods of collecting data from mobile phone for human mobility analysis to show that cellular network data, although limited in terms of location precision and recording frequency, offer two major advantages for studying human mobility. First, very large user samples – covering broad geographical areas – can be followed over a long period of time. Second, this type of data allows researchers to choose a specific data collection methodology (active or passive), depending on the objectives of their study. The big mobile phone localization datasets have provided a new impulse for the interdisciplinary research in human mobility.

Originality/value of chapter — We propose considering cellular network location data as a useful complementary source for transportation research and provide case studies to illustrate the advantages and disadvantages of each proposed method. Mobile phones have become a kind of “personal sensor” offering an ever-increasing amount of location data on mobile phone users over long time periods. These data can thus provide a framework for a comprehensive and longitudinal study of temporal dynamics, and can be used to capture ephemeral events and fluctuations in day-to-day mobility behavior offering powerful tools to transportation research, urban planning, or even real-time city monitoring.

Details

Transport Survey Methods
Type: Book
ISBN: 978-1-78-190288-2

Keywords

Article
Publication date: 23 November 2010

Dimitri V. Zarzhitsky, Diana F. Spears and David R. Thayer

The purpose of this paper is to describe a multi‐robot solution to the problem of chemical source localization, in which a team of inexpensive, simple vehicles with short‐range…

Abstract

Purpose

The purpose of this paper is to describe a multi‐robot solution to the problem of chemical source localization, in which a team of inexpensive, simple vehicles with short‐range, low‐power sensing, communication, and processing capabilities trace a chemical plume to its source emitter

Design/methodology/approach

The source localization problem is analyzed using computational fluid dynamics simulations of airborne chemical plumes. The analysis is divided into two parts consisting of two large experiments each: the first part focuses on the issues of collaborative control, and the second part demonstrates how task performance is affected by the number of collaborating robots. Each experiment tests a key aspect of the problem, e.g. effects of obstacles, and defines performance metrics that help capture important characteristics of each solution.

Findings

The new empirical simulations confirmed previous theoretical predictions: a physics‐based approach is more effective than the biologically inspired methods in meeting the objectives of the plume‐tracing mission. This gain in performance is consistent across a variety of plume and environmental conditions. This work shows that high success rate can be achieved by robots using strictly local information and a fully decentralized, fault‐tolerant, and reactive control algorithm.

Originality/value

This is the first paper to compare a physics‐based approach against the leading alternatives for chemical plume tracing under a wide variety of fluid conditions and performance metrics. This is also the first presentation of the algorithms showing the specific mechanisms employed to achieve superior performance, including the underlying fluid and other physics principles and their numerical implementation, and the mechanisms that allow the practitioner to duplicate the outstanding performance of this approach under conditions of many robots navigating through obstacle‐dense environments.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 3 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 20 November 2009

Diana F. Spears, David R. Thayer and Dimitri V. Zarzhitsky

In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The…

Abstract

Purpose

In light of the current international concerns with security and terrorism, interest is increasing on the topic of using robot swarms to locate the source of chemical hazards. The purpose of this paper is to place this task, called chemical plume tracing (CPT), in the context of fluid dynamics.

Design/methodology/approach

This paper provides a foundation for CPT based on the physics of fluid dynamics. The theoretical approach is founded upon source localization using the divergence theorem of vector calculus, and the fundamental underlying notion of the divergence of the chemical mass flux. A CPT algorithm called fluxotaxis is presented that follows the gradient of this mass flux to locate a chemical source emitter.

Findings

Theoretical results are presented confirming that fluxotaxis will guide a robot swarm toward chemical sources, and away from misleading chemical sinks. Complementary empirical results demonstrate that in simulation, a swarm of fluxotaxis‐guided mobile robots rapidly converges on a source emitter despite obstacles, realistic vehicle constraints, and flow regimes ranging from laminar to turbulent. Fluxotaxis outperforms the two leading competitors, and the theoretical results are confirmed experimentally. Furthermore, initial experiments on real robots show promise for CPT in relatively uncontrolled indoor environments.

Practical implications

A physics‐based approach is shown to be a viable alternative to existing mainly biomimetic approaches to CPT. It has the advantage of being analyzable using standard physics analysis methods.

Originality/value

The fluxotaxis algorithm for CPT is shown to be “correct” in the sense that it is guaranteed to point toward a true source emitter and not be fooled by fluid sinks. It is experimentally (in simulation), and in one case also theoretically, shown to be superior to its leading competitors at finding a source emitter in a wide variety of challenging realistic environments.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 10 April 2024

Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…

Abstract

Purpose

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.

Design/methodology/approach

This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.

Findings

Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.

Originality/value

Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 November 2021

Rama Rao Narvaneni and K. Suresh Babu

Software reliability growth models (SRGMs) are used to assess and predict reliability of a software system. Many of these models are effective in predicting future failures unless…

Abstract

Purpose

Software reliability growth models (SRGMs) are used to assess and predict reliability of a software system. Many of these models are effective in predicting future failures unless the software evolves.

Design/methodology/approach

This objective of this paper is to identify the best path for rectifying the BFT (bug fixing time) and BFR (bug fixing rate). Moreover, the flexible software project has been examined while materializing the BFR. To enhance the BFR, the traceability of bug is lessened by the version tag virtue in every software deliverable component. The release time of software build is optimized with the utilization of mathematical optimization mechanisms like ‘software reliability growth’ and ‘non-homogeneous Poisson process methods.’

Findings

In current market scenario, this is most essential. The automation and variation of build is also resolved in this contribution. Here, the software, which is developed, is free from the bugs or defects and enhances the quality of software by increasing the BFR.

Originality/value

In current market scenario, this is most essential. The automation and variation of build is also resolved in this contribution. Here, the software, which is developed, is free from the bugs or defects and enhances the quality of software by increasing the BFR.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 January 2017

Jian Li, Dan Wu, Yan Han and Lina Xu

The purpose of this paper is to extract the angle information of direct P wave within multidimensional vibration signals obtained through the sensor array, and to realize high…

Abstract

Purpose

The purpose of this paper is to extract the angle information of direct P wave within multidimensional vibration signals obtained through the sensor array, and to realize high precision shallow burst point localization based on direct of angle (DOA).

Design/methodology/approach

This paper presents a method which combines adaptive covariance matrix (ACM) algorithm with geometric constraint conditions for extracting the angle information of direct P wave by using its polarization characteristics. First, modify the obtained three-dimensional vibration data by using attitude rotation matrix and unify the coordinate system of vibration field. Next, construct the beam model of direct P wave by making use of ACM algorithm and extract its angle information. Finally, modify P wave beam model by taking advantage of the space geometric constraint relations between nodes.

Findings

The results of numerical simulation show that this method not only can extract the angle information of direct P wave arriving at each node effectively, but also can evaluate the quality of extracted angle information of direct P wave. Meanwhile, the results of underground shallow explosion experiment show that this method can extract the angle information of direct P wave of each node significantly and can realize underground shallow explosion source localization based on DOA by using this information, the location error can be limited less than 50 cm and satisfies the location requirements of shallow burst point.

Originality/value

This paper provides a method for various problems of underground localization based on the sensor array, such as directional demolition blasting, underground damage assessment, earth-penetrating projectile burst point positioning in weaponry industry testing plant, etc., and has definite value to engineering application in underground space positioning field.

Details

Sensor Review, vol. 37 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 February 2024

Koraya Techawongstien

The Thai video game domain has witnessed substantial growth in recent years. However, many games enjoyed by Thai players are in foreign languages, with only a handful of titles…

Abstract

Purpose

The Thai video game domain has witnessed substantial growth in recent years. However, many games enjoyed by Thai players are in foreign languages, with only a handful of titles translated/localized into the Thai locale. Some Thai video game enthusiasts have taken on the role of unofficial translators/localizers, contributing to a localization domain that accommodates both official and unofficial translation/localization efforts. This general review paper aims to outline the author's experiences in collecting data within the domain of video game translation/localization in Thailand.

Design/methodology/approach

Using a descriptive approach, this general review paper employs the netnography method. It sheds light on the complexities of video game translation/localization in Thailand and incorporates semi-structured interviews with a snowball sampling technique for the selection of participants and in-game data collection methods.

Findings

The netnography method has proved instrumental in navigating the intricacies of this evolving landscape. Adopting the netnography method for data collection in this research contributes to establishing more robust connections with the research sites. “Inside” professionals and individuals play a significant role in data gathering by recommending additional sources of information for the research.

Originality/value

While netnography is conventionally applied in the market and consumer research, this paper demonstrates its efficacy in unraveling the dynamics of video game translation/localization in Thailand.

Details

Qualitative Research Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1443-9883

Keywords

Open Access
Article
Publication date: 5 June 2020

Zijun Jiang, Zhigang Xu, Yunchao Li, Haigen Min and Jingmei Zhou

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road…

1073

Abstract

Purpose

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road environments in real-time. The global positioning system and the strap-down inertial navigation system are two common techniques in the field of vehicle localization. However, the localization accuracy, reliability and real-time performance of these two techniques can not satisfy the requirement of some critical ITS applications such as collision avoiding, vision enhancement and automatic parking. Aiming at the problems above, this paper aims to propose a precise vehicle ego-localization method based on image matching.

Design/methodology/approach

This study included three steps, Step 1, extraction of feature points. After getting the image, the local features in the pavement images were extracted using an improved speeded up robust features algorithm. Step 2, eliminate mismatch points. Using a random sample consensus algorithm to eliminate mismatched points of road image and make match point pairs more robust. Step 3, matching of feature points and trajectory generation.

Findings

Through the matching and validation of the extracted local feature points, the relative translation and rotation offsets between two consecutive pavement images were calculated, eventually, the trajectory of the vehicle was generated.

Originality/value

The experimental results show that the studied algorithm has an accuracy at decimeter-level and it fully meets the demand of the lane-level positioning in some critical ITS applications.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 22 January 2024

Jun Liu, Junyuan Dong, Mingming Hu and Xu Lu

Existing Simultaneous Localization and Mapping (SLAM) algorithms have been relatively well developed. However, when in complex dynamic environments, the movement of the dynamic…

Abstract

Purpose

Existing Simultaneous Localization and Mapping (SLAM) algorithms have been relatively well developed. However, when in complex dynamic environments, the movement of the dynamic points on the dynamic objects in the image in the mapping can have an impact on the observation of the system, and thus there will be biases and errors in the position estimation and the creation of map points. The aim of this paper is to achieve more accurate accuracy in SLAM algorithms compared to traditional methods through semantic approaches.

Design/methodology/approach

In this paper, the semantic segmentation of dynamic objects is realized based on U-Net semantic segmentation network, followed by motion consistency detection through motion detection method to determine whether the segmented objects are moving in the current scene or not, and combined with the motion compensation method to eliminate dynamic points and compensate for the current local image, so as to make the system robust.

Findings

Experiments comparing the effect of detecting dynamic points and removing outliers are conducted on a dynamic data set of Technische Universität München, and the results show that the absolute trajectory accuracy of this paper's method is significantly improved compared with ORB-SLAM3 and DS-SLAM.

Originality/value

In this paper, in the semantic segmentation network part, the segmentation mask is combined with the method of dynamic point detection, elimination and compensation, which reduces the influence of dynamic objects, thus effectively improving the accuracy of localization in dynamic environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 October 2019

Abdesselam Bougdira, Abdelaziz Ahaitouf and Ismail Akharraz

The purpose of this paper is to describe a proposed framework for traceability purpose. Hence, the framework provides a formal and structured way of viewing a traceability…

Abstract

Purpose

The purpose of this paper is to describe a proposed framework for traceability purpose. Hence, the framework provides a formal and structured way of viewing a traceability solution. This structure lays the required bases for a traceability system before starting development and deployment.

Design/methodology/approach

The paper examines several traceability publications, including systems and literature review. The study covers the traceability implementation phase. Therefore, this research approaches the traceability issue from three perspectives (description, engineering and executive one). The separation between aspects is essential when describing and comparing traceability systems. This distinction is also helpful when recommending solution improvements.

Findings

The framework identifies six traceability bases: aims, functions, specifications, data classification, processes and procedures. These can establish a basis for a general purpose tool that can enable users to develop an efficient traceability solution. Thus, the first ontology expresses the framework domain and ensures optimal use of it. The second one represents the bases that can serve as a knowledge base to manage the product data.

Research limitations/implications

The suggested framework tackles the implementation of traceability. Therefore, the design emphasizes the importance of technological concerns. Some studied cases could require more research angles (i.e. economic and legislative). Thus, framework enrichment is essential for further improvements.

Practical implications

The framework helps users to develop a general, interoperable and scalable traceability solution. These are important to promote the generalization of traceability systems.

Originality/value

The framework fulfills a requirement for establishing general traceability foundations. Therefore, the guide independently operates of the product or the industry specificity. Moreover, the bases aim to bridge the gap between solution engineering and traceability requirements.

Details

Journal of Modelling in Management, vol. 15 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 10 of over 1000