Search results

1 – 10 of over 1000
Article
Publication date: 1 February 1994

Yiqiang Zhang, J.I.D. Alexander and J. Ouazzani

Free and moving boundary problems require the simultaneous solution ofunknown field variables and the boundaries of the domains on which thesevariables are defined. There are many…

Abstract

Free and moving boundary problems require the simultaneous solution of unknown field variables and the boundaries of the domains on which these variables are defined. There are many technologically important processes that lead to moving boundary problems associated with fluid surfaces and solid‐fluid boundaries. These include crystal growth, metal alloy and glass solidification, melting and flame propagation. The directional solidification of semi‐conductor crystals by the Bridgman—Stockbarger method1,2 is a typical example of such a complex process. A numerical model of this growth method must solve the appropriate heat, mass and momentum transfer equations and determine the location of the melt—solid interface. In this work, a Chebyshev pseudospectral collocation method is adapted to the problem of directional solidification. Implementation involves a solution algorithm that combines domain decomposition, a finite‐difference preconditioned conjugate minimum residual method and a Picard type iterative scheme.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 February 2018

Sijo M.T., Jayadevan K.R. and Sheeja Janardhanan

Stir casting is a promising technique used for the manufacture of Al-SiC metal matrix composites. The clustering of reinforcement particles is a serious concern in this production…

Abstract

Purpose

Stir casting is a promising technique used for the manufacture of Al-SiC metal matrix composites. The clustering of reinforcement particles is a serious concern in this production method. In this work, mushy-state solidification characteristics in stir casting are numerically simulated using computational fluid dynamics techniques to study the clustering of reinforcement particles.

Design/methodology/approach

Effects of process parameters on the distribution of particles are examined by varying stirrer speed, volume fraction of reinforcement, number of blades on stirrer and diameter ratio (ratio of crucible diameter to stirrer diameter). Further, investigation of characteristics of cooling curves during solidification process is carried out. Volume of fluid method in conjunction with a solidification model is used to simulate the multi-phase fluid flow during the mushy-state solidification. Solidification patterns thus obtained clearly indicate a strong influence of process parameters on the distribution of reinforcement particles and solidification time.

Findings

From the simulation study, it is observed that increase in stirrer speed from 50 to 150 rad/s promotes faster solidification rate. But, beyond 100 rad/s, stirrer speed limit, clustering of reinforcement particles is observed. The clustering of reinforcement particles is seen when volume fraction of reinforcement is increased beyond 10 per cent. When number of blades on stirrer are increased from three to five, an increase in solidification rate is observed, and an uneven distribution of reinforcement particles are observed for five-blade geometry. It is also seen from the simulation study that a four-blade stirrer gives a better distribution of reinforcement in the molten metal. Decrease in diameter ratio from 2.5 to 1.5 promotes faster solidification rate.

Originality/value

There is 90 per cent closeness in results for simulation study and the published experimental results.

Details

World Journal of Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 5 February 2018

Shahzeb Jafri

Purpose: The paper makes use of Kuhn’s “The Structure of Scientific Revolutions” to explain Consumer Culture Theory (CCT) as a normal scientific tradition. The paper intends to…

Abstract

Purpose: The paper makes use of Kuhn’s “The Structure of Scientific Revolutions” to explain Consumer Culture Theory (CCT) as a normal scientific tradition. The paper intends to show how a previously marginalized research tradition has now started solidifying its paradigmatic boundaries, and what implications this holds for aspiring CCT scholars.

Method/approach: The paper makes use of literature from the Journal of Consumer Research and Marketing Theory to point out the methodological and practical issues in the discipline that have been pointed out by CCT proponents. These criticisms are discussed as scientific “anomalies.” Furthermore, the paper critically analyzes immigrant acculturation literature produced by CCT researchers in the past 30 years through a Kuhnian lens to show proponents of the fields implicitly addressing different “anomalies,” explaining the tradition to be a normal scientific one.

Findings: An in-depth analysis of immigrant acculturation literature within CCT shows every successive project within the field has addressed “anomalies” by pointing out research gaps, providing a rationale for their respective methodology, and, in turn, adding precision to theoretical frameworks, depicting a normal scientific tradition.

Originality and value: The paper adds value by discussing the probable consequences of this boundary solidification. On one hand, aspiring scholars will have scientific assumptions with which to enter the laboratory (consumer world) and guidelines that can be used toward publishing. On the other, this can also lead to a possible dogmatization of an emerging consumer research paradigm, making it difficult for new scholars to be creative.

Article
Publication date: 1 September 2001

P. Mohan Raj, S. Sarkar, S. Chakraborty and P. Dutta

A transient, three‐dimensional mathematical model of a single‐pass laser surface alloying process has been developed to examine the macroscopic heat, momentum and species…

Abstract

A transient, three‐dimensional mathematical model of a single‐pass laser surface alloying process has been developed to examine the macroscopic heat, momentum and species transport during the process. A numerical study is performed in a co‐ordinate system moving with the laser at a constant scanning speed. A fixed grid enthalpy‐porosity approach is used, which predicts the evolutionary development of the laser‐melted pool. It is observed that the melting of the added alloying element is not instantaneous in case its melting temperature is higher as compared to that of the base metal. As a result, the addition of alloying element at the top surface cannot be accurately modelled as a mass flux boundary condition at that surface. To resolve this situation, the addition of alloying elements is formulated by devising a species generation term for the solute transport equation. By employing a particle‐tracking algorithm and a simultaneous particle‐melting consideration, the species source term is estimated by the amount of fusion of a spherical particle as it passes through a particular control volume. Numerical simulations are performed for Ni as alloying element on Al base metal. It is revealed that the present model makes a distinctly different prediction of composition variation within the resolidified microstructure, as compared to a model that does not incorporate any considerations of distributed melting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 March 2024

Yu-Xiang Wang, Chia-Hung Hung, Hans Pommerenke, Sung-Heng Wu and Tsai-Yun Liu

This paper aims to present the fabrication of 6061 aluminum alloy (AA6061) using a promising laser additive manufacturing process, called the laser-foil-printing (LFP) process…

Abstract

Purpose

This paper aims to present the fabrication of 6061 aluminum alloy (AA6061) using a promising laser additive manufacturing process, called the laser-foil-printing (LFP) process. The process window of AA6061 in LFP was established to optimize process parameters for the fabrication of high strength, dense and crack-free parts even though AA6061 is challenging for laser additive manufacturing processes due to hot-cracking issues.

Design/methodology/approach

The multilayers AA6061 parts were fabricated by LFP to characterize for cracks and porosity. Mechanical properties of the LFP-fabricated AA6061 parts were tested using Vicker’s microhardness and tensile testes. The electron backscattered diffraction (EBSD) technique was used to reveal the grain structure and preferred orientation of AA6061 parts.

Findings

The crack-free AA6061 parts with a high relative density of 99.8% were successfully fabricated using the optimal process parameters in LFP. The LFP-fabricated parts exhibited exceptional tensile strength and comparable ductility compared to AA6061 samples fabricated by conventional laser powder bed fusion (LPBF) processes. The EBSD result shows the formation of cracks was correlated with the cooling rate of the melt pool as cracks tended to develop within finer grain structures, which were formed in a shorter solidification time and higher cooling rate.

Originality/value

This study presents the pioneering achievement of fabricating crack-free AA6061 parts using LFP without the necessity of preheating the substrate or mixing nanoparticles into the melt pool during the laser melting. The study includes a comprehensive examination of both the mechanical properties and grain structures, with comparisons made to parts produced through the traditional LPBF method.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 August 2021

Hung-Yu Wang, Yu-Lung Lo, Hong-Chuong Tran, M. Mohsin Raza and Trong-Nhan Le

For high crack-susceptibility materials such as Inconel 713LC (IN713LC) nickel alloy, fabricating crack-free components using the laser powder bed fusion (LPBF) technique…

Abstract

Purpose

For high crack-susceptibility materials such as Inconel 713LC (IN713LC) nickel alloy, fabricating crack-free components using the laser powder bed fusion (LPBF) technique represents a significant challenge because of the complex interactions between the effects of the main processing parameters, namely, the laser power and scanning speed. Accordingly, this study aims to build up a methodology which combines simulation model and experimental approach to fabricate high-density (>99.9%) IN713LC components using LPBF process.

Design/methodology/approach

The present study commences by performing three-dimensional (3D) heat transfer finite element simulations to predict the LPBF outcome (e.g. melt pool depth, temperature and mushy zone extent) for 33 representative sample points chosen within the laser power and scanning speed design space. The simulation results are used to train a surrogate model to predict the LPBF result for any combination of the processing conditions within the design space. Then, experimental trials were performed to choose the proper hatching space and also to define the high crack susceptibility criterion. The process map is then filtered in accordance with five quality criteria, namely, avoiding the keyhole phenomenon, improving the adhesion between the melt pool and the substrate, ensuring single-scan-track stability, avoiding excessive melt pool evaporation and suppressing the formation of micro-cracks, to determine the region of the process map which improves the relative density of the IN713LC component and minimizes the micro-cracks. The optimal processing conditions are used to fabricate IN713LC specimens for tensile testing purposes.

Findings

The optimal processing conditions predicted by simulation model are used to fabricate IN713LC specimens for tensile testing purposes. Experimental results show that the tensile strength and elongation of 3D-printed IN713LC tensile bar is higher than those of tensile bar made by casting. The yield strength of 791 MPa, ultimate strength of 995 MPa, elongation of 12%, and relative density of 99.94% are achieved.

Originality/value

The present study proposed a systematic methodology to find the processing conditions that are able to minimize the formation of micro-crack and improve the density of the high crack susceptivity metal material in LPBF process.

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 3 January 2023

Tuomo Peltonen and Sirkka-Liisa Huhtinen

While there is anecdotal evidence that internationally mobile workers often form isolated nation-based communities or “expatriate bubbles,” previous academic scholarship on the…

Abstract

Purpose

While there is anecdotal evidence that internationally mobile workers often form isolated nation-based communities or “expatriate bubbles,” previous academic scholarship on the expatriate communities and their subjective boundaries is limited. The primary purpose of this article is to advance the theoretical or conceptual understanding of expatriate communities as bubbles.

Design/methodology/approach

As developed by Lamont and Molnár (2002), the theory of symbolic boundaries is applied and set to scrutinize the production and maintenance of insulated expatriate communities. Empirically, an ethnographic study of a community of Finnish expatriates in a Southeast Asian country is undertaken to describe how symbolic boundaries are constructed.

Findings

The main theoretical implication of the paper is the recognition that expatriates themselves are involved in creating the “bubble.” The boundaries separating the national expatriate community are not externally imposed but can be viewed as consequences of the active boundary work of the expatriates. The empirical study demonstrates how the Finnish expatriates negotiated the symbolic boundaries of their community, drawing on cultural, moral and spatial modalities in different levels of boundary work.

Originality/value

There need to be more systematic attempts to develop a theoretically grounded understanding of insulated expatriate communities and their boundaries. This article contributes to the sociological conceptualization of expatriate bubbles by utilizing the symbolic boundary approach, which adds perspective to the embryonic theory of the subjective boundaries of expatriate communities. The multiplicity of different types of symbolic boundaries and their modalities suggests that an expatriate bubble is rarely a finished state or structure.

Details

Journal of Global Mobility: The Home of Expatriate Management Research, vol. 11 no. 1
Type: Research Article
ISSN: 2049-8799

Keywords

Content available
Book part
Publication date: 5 February 2018

Abstract

Details

Consumer Culture Theory
Type: Book
ISBN: 978-1-78743-907-8

Article
Publication date: 4 December 2018

Konstantin Risse, Matthias Schorgel, Dirk Bartel, Bernhard Karpuschewski and Florian Welzel

The purpose of this paper is to investigate the influence of different finish processes on the surface integrity and tribological behaviour of cylinder running surfaces for…

Abstract

Purpose

The purpose of this paper is to investigate the influence of different finish processes on the surface integrity and tribological behaviour of cylinder running surfaces for internal combustion engines.

Design/methodology/approach

The cutting force during finishing and the resulting surface topography was measured for a variety of cylinder running surfaces made of EN-GJL-250, EN-GJV-400 and thermal sprayed aluminium alloy. A separate conditioning tool was developed and tested. Different analysis methods (SEM, EDX, SIMS and FIB) for the characterisation of the boundary conditions were used. By an oscillating friction wear test and a single cylinder floating liner engine, the running-in and frictional behaviour was rated.

Findings

It was shown that honing with low cutting forces and silicon carbide cutting material decreases the friction in operation. The characteristics of the boundary layers after running-in depend on the finish machining process. A preconditioning with a separate tool can adjust the boundary layer and running-in behaviour. Based on the experimental results, a multi-body and computational fluid dynamics simulation was developed for the floating liner engine.

Originality/value

The results demonstrate the potential of finishing with low process forces to reduce friction and the need for a complete consideration of the tribological system piston ring/cylinder liner surface.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 December 2023

İdris Tuğrul Gülenç, Mingwen Bai, Ria L. Mitchell, Iain Todd and Beverley J. Inkson

Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This…

Abstract

Purpose

Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This study aims to develop a cost-effective Ti6Al4V-carbon feedstock, which preserves the parent Ti6Al4V particle’s flowability, and produces in situ TiC-reinforced Ti6Al4V composites with superior traits.

Design/methodology/approach

Ti6Al4V particles were directly mixed with graphite flakes in a planetary ball mill. This composite powder feedstock was used to manufacture in situ TiC-Ti6Al4V composites using various energy densities. Relative porosity, microstructure and hardness of the composites were evaluated for different SLM processing parameters.

Findings

Homogeneously carbon-coated Ti6Al4V particles were produced by direct mixing. After SLM processing, in situ grown 100–500 nm size TiC nanoparticles were distributed within the α-martensite Ti6Al4V matrix. The formation of TiC particles refines the Ti6Al4V β grain size. Relative density varied between 96.4% and 99.5% depending on the processing parameters. Hatch distance, exposure time and point distance were all effective on relative porosity change, whereas only exposure time and point distance were effective on hardness change.

Originality/value

This work introduces a novel, cost-effective powder feedstock preparation method for SLM manufacture of Ti6Al4V-TiC composites. The in situ SLM composites achieved in this study have high relative density values, well-dispersed TiC nanoparticles and increased hardness. In addition, the feedstock preparation method can be readily adapted for various matrix and reinforcement materials in future studies.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000